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Bayes

● Useful References:

Tutorial:  
http://www.sciencedirect.com/science/article/pii/S1007570415000428 

MUCM toolkit: 
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
 

Goldstein book chapter on model adequacy: 
http://onlinelibrary.wiley.com/doi/10.1002/9781118351475.ch26/summary 

Goldstein and Wooff book: 
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470015624.html 

A decent website with basic Bayesian theory: 
http://www.bayesian-inference.com/index

http://www.sciencedirect.com/science/article/pii/S1007570415000428
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
http://onlinelibrary.wiley.com/doi/10.1002/9781118351475.ch26/summary
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470015624.html
http://www.bayesian-inference.com/index


Outline

• Introduction to Bayes 
• Introduction to problem to be solved
• The Simulator
• MCMC
• Introduction to exercise

Run exercise
• Metropolis-Hastings
• Analyse results



Introduction to Bayes

• Why Bayes
– Uncertainty

• Data (noise, resolution)
• Simulator (physics, input/output spaces)
• Model parameters and variables

– Discrepancy
• Internal/external



Classic inversion vs statistical inversion

• Classic inversion
– Simulator coupled with a transfer function 

to update model to fit data in least 
number of steps

– Fast
– No uncertainty 
– Can get trapped in local minima
– Requires computation of gradient of 

simulator output against model 
parameters (difficult and expensive)

– Must start close to global solution



Classic inversion vs statistical inversion

• Statistical inversion
– Requires only the simulator to sample 

model space
– Allows expert input/judgements to provide 

prior info on distribution of all parameters
– Uncertainty analysis
– Can explore relevant part of model space
– Converges faster if start is close to global 

solution but this is not a requirement
– Less likely to be trapped by local minima



Introduction to problem to be 
solved

Internal waves are generated when currents 
or tides interact with topography. Here we 
examine 'solitons' created in the Luzon Strait 
as they interact with the China margin. They 
can be detected on satellite images



Seismic Oceanography
• Reflectivity is created from impedance 

boundaries in water caused by stratification.
• Water Impedance is a function of 

temperature, salinity and pressure (depth)



Seismic Oceanography
• Reflections can be processed as conventional 

seismic reflection data (though some 
complications as the reflectivity is dynamic)



Seismic Oceanography

Probable temperature and salinity 
structure based on interpretation of 
seismic image

Zone of no data as receiver 
array was on the surface



Bayes

● Bayesian inference is a method of 
statistical inference in which Bayes' rule is 
used to update the probability for a 
hypothesis as evidence is acquired. 
(Wikipedia)

P(m) P(d|m) P(m|d) α P(d|m)P(m)

Updated probability of modelLikelihoodInitial probability of model



Markov Chain Monte Carlo

● In statistics, Markov Chain Monte Carlo (MCMC) 
methods are a class of algorithms for sampling 
from a probability distribution based on 
constructing a Markov chain (a memoryless 
random walk) that has the desired distribution 
as its equilibrium distribution. The state of the 
chain after a number of steps is then used as a 
sample of the desired distribution. The quality of 
the sample improves as a function of the 
number of steps. (Wikipedia)



Exercise

● We will generate some seismic reflection 
data from known temperature and salinity 
measurements with added noise. We then 
use a Markov Chain Monte Carlo algorithm 
to use it to try to recover the original 
temperature, salinity models.

We use synthetic data so we can assess 
how well the algorithm has performed



Exercise

1) Compute some seismic reflection data using a 
simulator:

● Using data from a CTD cast (T & S vs depth)

2) Perturb the input data by adding noise to become 
our input data

3) Derive a starting model

4) Calculate covariance between T & S based on 
CTD data

5) Run MCMC routine to recover T & S from the noisy 
data 



Run exercise

• Walk through code

• MH_simulated – forward model from ctd data

• MH_noise_prior – add noise and compute 
starting salinity/temperature curves

• MH_cov – compute covariance T,S at each 
depth

• MH_MCMC – met hastings calculation



The Simulator

• Requirement to compute reflectivity given input 
parameters of T, S & pressure.

• Open file MCMC/MH_simulated .m
• At each depth, sample T & S

• Use equations of state for sea-water (sw_....) to compute 
pressure, sound-speed and density

– Simple polynomial functions so quick to compute

• Compute impedance differences

• Compute reflectivity -> what we measure



Noise, prior and starting model

● Open file MCMC/MH_noise_prior.m
● The first part adds noise to our reflectivity data 

with a signal-to-noise ratio of 5 (you can 
change SNR value to investigate how robust 
the result is to noise)

● The second part defines the starting model. To 
do this we fit a polynomial to the T & S data to 
start we use a 4th order function (you can 
change this value to investigate how robust 
the result is to starting model)



Covariance

● Open file MCMC/MH_cov.m
● Temperature and salinity are NOT independent and 

are linked through density (gravity rules OK).
● To describe this we compute the covariance matrix 

over a sliding window 

● over a window length M (you can change M value 
to investigate effect but MUST be odd)

● We extract the variance of T and S to guide 
candidate sampling

= ∑ T i−T 
2 ∑ T j−tS j−S 

∑ S j−S T j−T  ∑ S j−S 
2 



MCMC

● Open file MCMC/MH_MCMC.m
● The key parameter here is N the number of 

iterations. It need to be suffice to let the chain 
converge (adding more samples does not 
change the shape of the posterior density 
function), but not too long otherwise you have 
to wait for ever.... (you can change N suggest 
values of >1000)

● So lets get the code running then I will explain 
it function



Metropolis-Hastings

● Steps (i is iteration, j is depth level)

● Independently draw a candidate set of 
parameters {T,S} based on computed variance 
of T and S which is set to be ¼ of width of prior. 
This ensures that any step is not too large 
which may result in too many rejected models

● Compute the model probability ratio between 
the new and previous T,S pairs (this 
incorporates the previously computed 
covariance) 



Metropolis-Hastings

● Use the simulator to compute reflectivity of 
new and previous model

● Compute likelihoods, ie how likely would the 
observed data have been obtained from the 
new and previous model

● Compute ratio of likelihoods 
● Multiply this by ratio of model probabilities to 

compute α



Metropolis-Hastings

● Accept or reject
– If ratio is > 1 then this is a more likely model so 

always accept
– If ratio is 0 always reject
– If 0 < α < 1

● Take a random number between 0 and 1 from uniform 
distribution u

● If u < α accept this model even though it is not as good as 
the previous; otherwise reject

● Step to candidate model or repeat current 
model if candidate is rejected

● REPEAT



Plotting PDFs

● Once chain is complete you can plot the 
posterior density function (PDF) for each 
parameter. This is a histogram of the number of 
times the 'walk' visited the value. The width is a 
measure of the uncertainty



Conveying the message

● In this exercise 
you have 
modelled one 
trace.....and 
there could be 
thousands



Pitfalls?
● A major problem with MCMC is the number of 

runs of the simulator needed to gather enough 
information to provide a robust result – has the 
series converged?



Uncertainties

● We have only really explored one source 
of uncertainty in this exercise – that of 
noisy data

● What other source of uncertainty are 
there?



Uncertainties

● Noise
● Discretisation/sampling (Nyquist)
● Simulator error – we cheat on the physics to 

make the problem tractable
● Model parametrisation – does the real Earth 

look like your model?

→ Model discrepancy
● MCMC allows this to be explicity included based 

on expert judgement



Emulation

● Here the simulator is fast – what if you wanted 
to a raytraced model or 3D MT data using 
MCMC?

● How long to run 1000 models for each 
parameter along each ray?

If the simulator takes 0.1 s per ray and there 
are 25 OBS with 100 time picks each, the 
model has 100 parameters, and you want to 
run 1000 iterations for each ray. How long 
would it take?



Emulation

● An emulator is a surrogate model with 
calibrated uncertainty.
● Run the simulator a limited number of time that 

sample the whole model space
● Create a surface through the results and 

construct a polynomial to describe the result
● Run the simulator a second time using different 

inputs
● Use the result to calibrate uncertainty in 

polynomial away from calibration points



Emulation



Emulation

● Run the MCMC (M-H) using the emulator as a 
proxy for the simulator 

● Identify regions of model space that never fit the 
observations (implausibility test)

● Update model space by removal of implausible 
areas

● Re-compute emulator
● Converged when error in emulator is at the same 

level as the other uncertainty terms (noise, model 
discrepancy...)



Emulators

Observed 
t, Z, g data

Emulated 
t, Z, g data

Is model *plausible?

Generate new 
model from space

Have sufficient plausible models 
been found to build new emulator?

Run forward 
emulator codes

*Using appropriate 
plausibility criterion

Generate training 
V, r, ρ models

Build 
emulators

No

Run forward 
simulator codes

Did model 
space shrink?

Yes

Stop

Store 
model

Yes No

NoYes



Building an emulator
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Building an emulator

Offset (m)
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h(x) g(x)

Where h(x) is the polynomial and g(x) the calibrated uncertainty



Using an emulator



Using an emulator
● The resultant error in the emulator is 

reduced on each iteration when 
implausible model space is removed

Roberts, A.W., et al., Crustal constraint through complete model space screening for diverse 
geophysical datasets facilitated by emulation, Tectonophysics (2012), 
doi:10.1016/j.tecto.2012.03.006



Bayes

● Why do classic inversion – now you know 
its limitations?

● Useful References:
Tutorial:  http://www.sciencedirect.com/science/article/pii/S1007570415000428 

MUCM toolkit: 
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html 

Goldstein book chapter on model adequacy: 
http://onlinelibrary.wiley.com/doi/10.1002/9781118351475.ch26/summary 

Goldstein and Wooff book: 
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470015624.html 

A decent website with basic Bayesian theory: http://www.bayesian-inference.com/index

http://www.sciencedirect.com/science/article/pii/S1007570415000428
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
http://onlinelibrary.wiley.com/doi/10.1002/9781118351475.ch26/summary
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470015624.html
http://www.bayesian-inference.com/index

