

Inversion of tsunami data

A. Sladen – CNRS, Géoazur

DEFINITION

Tsunami waves are gravity wave with a long period \rightarrow need a BIG source !

DEFINITION

Krakatoa, 1883

Lituya Bay, Alaska, 1958

Summer 2015, E.T. pers. comm.

DEFINITION

M_w8.3 Tokachi-Oki 1968

K.Abe,1973

Tsunami equations

- Assume full-instantaneous transfer of deformation to water column (incompressible)
 - Shallow-water equations: depth-average Navier-stokes for long wavelengths (vs depth), only force is gravity, no viscous effect
 - linear long wave (λ >> h) leads to : $c = \sqrt{gh}$

$$\frac{\partial(\eta + h)}{\partial t} + \nabla \left[\mathbf{v}(\eta + h) \right] = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}, \nabla) \mathbf{v} = -\mathbf{g} \cdot \nabla \eta + \Sigma \mathbf{f}$$

g gravity
v horizontal velocity
η sea surface height
6/35

JIG – June 2015

Tokachi-Oki 1968

Inversion for seafloor deformation

Satake, 1987

(4)

Tokachi-Oki 1968

bathymetric grid resolution ~2.5km

One big limitation

Inversion of tide gauge records ~linear only if large event and inverting 1st oscillation. Tide gauge should not be hidden deep inside a harbor maze

8/35

Tsunami data inversion

- Sea-floor deformation caused by earthquake elastic dislocation (e.g. with Okada[1985])
- Assume full-instantaneous transfer of deformation to water column (incompressible)
- Shallow-water equations: depth-average Navier-stokes for long wavelengths
- linear long wave (λ >> h) leads to : $c = \sqrt{gh}$

 $M_0 = \mu ULW$ $M_0 \text{ seismic moment}$ U displacement $\mu \text{ rigidity}$ L (W) fault length (wdth)

$$\frac{\partial(\eta + h)}{\partial t} + \nabla [\mathbf{v}(\eta + h)] = 0$$
$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\mathbf{g} \cdot \nabla \eta + \Sigma \mathbf{f}$$

g gravity **v horizontal velocity** η sea surface height 9/35

JIG – June 2015

Ν

E A

R

Tide gage data today

Good global coverage,

- increasing number of stations with rapid sampling (>1/10min),
- x cannot record big waves,
- ✓ deep inside harbors, bays to record only tides

10/35

Altimetry data of M9.2 Sumatra 2004

Inversion illustrated

Tsunami data

 Sumatra 2004 triggered the fast development of deep-ocean pressure sensors « DART© buoys »

Data directly available online (link) More and more source studies using these records

2011 M_w9.0 Japan earthquake

Buoys with pressure sensors

Bathymetry data

- GEBCO_2014 : a global 30 arc-second (<1km) interval grid based on global altimetry data, nautical charts and bathymetric sounding
- Otherwise \rightarrow digitize nautical charts S

Inversion of tsunami data

- Advantages :
 - linear problem (for the most part),
 - absolute time!!
 - directly probing of sea-bottom deformation, even if rupture is far offshore!!
 - slow enough to assume static source (in most cases): V_{tsu}~200m/s and Vr~3km/s

POSTER on Sumatra 2004 bayesian inversion of tsunami and geodetic data

Bletery et al., in prep

94

30

slip

20

96

50

40

98

m

60

100

Corrections and limitation

Things you have to check if you get into the buisness

- Water filters freq>depth*3 (Kajiura, 1963)
- If steep bathymetry: extra vertical displacement from horizontal motion,
- Low and high frequency dispersion,

Bathymetry effect

Vertical deformation

Vertical deformation from horizontal motion

Tanioka and Satake [1996]

Bathymetric effect at global scale

Bletery et al., 2015

Improving Earth-tsunami coupling

Low frequency dispersion

Dispersion caused by elastic loading Tsunami speed reduction due to vertical seawater stratification

After correction from 1D Earth dispersion curves

23/35

Summary on tsunami data

- Tsunami data are critical to characterize old/future subduction earthquakes,
- "Simple" as geodetic data for earthquakes occurring offshore
 - And now:
- Dvlpt to improve physics in the models, with faster more efficient simulations,
- deep-ocean buoy program is expensive: different group exploring alternatives...

SIMULATION CODES

- Tunami (Univ. Tohoku): FD shallow-water eq., multi-grid, bottom roughness,
- COMCOT (Univ. Cornell): FD shallowwater eq., multi-grid, bottom roughness,
- Geoclaw (Univ. Washington): subpackage of Clawpack for tsunami. FV shallowwater, adaptative mesh,
- NEOWAVE (Univ. Hawaii) : FD nonhydrostatic SW equations, 2-way nested grid. Distributed upon request.

Summary

