Earthquake Geodesy Modelling Surface Displacements measured by GPS and InSAR

Henriette Sudhaus (& Sabrina Metzger (GFZ))

hsudhaus@geophysik.uni-kiel.de

Agenda

1 Part A: The Forward Model

Representation Theorem Rectangular dislocation Exercises

2 Part B: Optimization of observed surface displacements

This non-linear problem The model parameter space Exercises

3 Additional Information

Data Sources and Processing Software for GPS and InSAR

4 Literature

The birth of modern seismology

First observations of earthquake surface faulting after the 1906 Great San Francisco earthquake

Surface rupture of the 1906 San Francisco earthquake

USGS historical picture database

Fault slip types

The seismic cycle from a bird's view

From fast to slow motion

- a Full relaxed status at t = 0
- b Continental drift, fault loading, interseismic state
- c co-seismic rupture, fault unloading

Representation Theorem for earthquake faulting

Volterra's Theorem

$$u_{n}(\vec{x},t) = \int_{-\infty}^{\infty} d\tau \int_{\Sigma} \int [s_{i}(\xi,\tau)] \cdot c_{ijpq} \cdot v_{j} \cdot \frac{\partial}{\partial \xi_{q}} G_{np}(\vec{x},t-\tau,\xi,0) d\Sigma$$

- Forward modeling: With a given rupture process we can predict displacements at any point in/on the Earth
- Inversion: With a given surface displacement, we can infer the rupture process
- Geodetic data: Neglect the temporal resolution and look at the **total** displacement only: $\left(\int_{t_1}^{t_2} \mathbf{u}_{\mathbf{A}} dt\right)$

Representation Theorem for earthquake faulting

Volterra's Theorem

$$u_{n}(\vec{x},t) = \int_{-\infty}^{\infty} d\tau \int_{\Sigma} \int [s_{i}(\xi,\tau)] \cdot c_{ijpq} \cdot v_{j} \cdot \frac{\partial}{\partial \xi_{q}} G_{np}(\vec{x},t-\tau,\xi,0) d\Sigma$$

Displacement
at location x
Displacement
at location x
Displacement
at location x
Displacement
at location x

- Forward modeling: With a given rupture process we can predict displacements at any point in/on the Earth
- Inversion: With a given surface displacement, we can infer the rupture process
- Geodetic data: Neglect the temporal resolution and look at the **total** displacement only: $(\int_{t_1}^{t_2} \mathbf{u}_{\mathbf{A}} dt)$

Apr 21, 2015

Representation Theorem for earthquake faulting

Volterra's Theorem

- Forward modeling: With a given rupture process we can predict displacements at any point in/on the Earth
- Inversion: With a given surface displacement, we can infer the rupture process
- Geodetic data: Neglect the temporal resolution and look at the **total** displacement only: $(\int_{t_1}^{t_2} \mathbf{u}_{\mathbf{A}} dt)$

Near-field and far-field of a rupture/dislocation source

Rupture model parameters

Rupture model parameters

Dimension

- length [km]
- 🛿 width [km]
- **B** depth [km]

Orientation

- dip from hor. [°]
- **5** strike from North [°]

Location

- 6 x/East [km]
- y/North [km]

Slip

- **8** strike slip [m]
- dip slip [m]opening [m]

Rupture model parameters

Dimension

- length [km]
- ❷ width [km]
- depth [km]Orientation
- ④ dip from hor. [°]
- strike from North [°]Location
- 6 x/East [km]
- y/North [km]Slip
- strike slip [m]
- dip slip [m]opening [m]

Dislocation model

How to model dislocations in Matlab

U = disloc(mp,xloc,nu)

U 3×n displacement vector (ENU)
mp model parameter: 10×1 vector with
source dimension (length, width, depth)
source location (dip, strike)
source location (x, y) and
slip definition (s-slip, d-slip, opening)
xloc 3×n vector with n observation points (ENU)
nu Poisson's ratio (elasticity)

- Code written by Peter Cervelli, based on Okada (1985), purely elastic
- slip input = deformation output (usually [m]), source geometry: [km]
- Start with a Poisson's ratio of 0.25

Deformation caused by a vertical strike-slip fault

Earthquake Geodesy

Exercises - Displacing the surface

or "producing interferograms"

Purpose: Get a feeling for slip on faults and the induced surface displacements.

On your virtual machines: Go to /home/jissy/Documents/2_Tuesday/EQ_geodesy/fwdtools_octave Open Dislocation_fwd.m

Try out "randomly": edit lines "mp = [...]" and set up different source mechanisms

For the special cases: **Iceland:** edit LOS to $LOS = [-0.4 \ 0.1 \ -0.9]$

Nepal: edit lambda = 0.23/2 and edit LOS = $[0.5 \ 0.1 \ -0.7]$

Exercise - Special Task A

Voluntarily - specific tasks: Reproduce interferograms A: the 2000 Kleifarvatn earthquake, Iceland, Mw5.9 (we will try to optimize this earthquake fault after lunch...)

Earthquake Geodesy

Exercise - Task B

B: The 2015 Nepal earthquake, Mw7.8

arthquake Geodesy

Source scaling for earthquakes

"physics" - not all model parameter combination possible are realistic or observed in nature

Magnitude and Seismic Moment

Moment Magnitude (Aki & Richards) $Mw = \frac{2}{3}log(M_0) - 6.03$

Seismic Moment [Nm] $M_0 = rigidity(30 GPa) \cdot slip \cdot length \cdot width$

Source scaling for earthquakes

- not all model parameter combination possible are realistic or observed in nature

Deviations in scaling relations for different faulting styles:

For strike-slip earthquakes and increasing moment:

- the fault length grows faster than fault width (fault width is even saturated)
- the fault area grows slower than for earthquakes on average
- the slip grows faster than for earthquakes on average

For dip-slip earthquakes and increasing moment the fault length and width grow similarly.

Disloc parameter conventions as right-hand law

location (x,y,z)

right hand is foot wall, the palm faut plane (dip values 0 to -90 deg, negative only) thump is fault's upper edge thumb is pointing in strike direction fingers point in dip-slip direction thumb points in dextral strike slip

positive dip-slip: normal faulting negative dip-slip: thrust faulting

positive strike-slip: right-lateral slip negative strike-slip: left-lateral slip

rotate around thumb axis to rotate in dip

Icon made by Freepik is licensed under CC BY 3.0

This non-linear problem The model parameter space Exercises

Case at hand: The 2000 Kleifarvatn earthquake

H. Sudhaus

The non-linearity in the dislocation modelling

Linear dependency:

Surface displacements for a vertical plane with varying slip

Non-linear dependency:

Surface displacements for a vertical plane with varying strike.

The non-linear inverse problem solved with "Direct Search"

The objective function

misfit (or "cost") function as a special objective function

L₂-norm: misfit $\Phi(\mathbf{m}) = \|\mathbf{d}_{obs} - \mathbf{d}_{synth}\|_2 = \sqrt{(\mathbf{d}_{obs} - \mathbf{d}_{synth})^2}$... very sensitive. Best suiting for highly non-linear problems.

The misfit function $\Phi(\mathbf{m})$ is a function of \mathbf{m} since $\mathbf{d}_{synth} = \mathbf{G}(\mathbf{m})$.

 $\Phi(\mathbf{m}) = \|\mathbf{d}_{obs} - \mathbf{d}_{synth}\|_2 = \sqrt{(\mathbf{d}_{obs} - \mathbf{d}_{synth})^2} = \sqrt{\mathbf{r}^{\mathrm{T}}\mathbf{r}}, \text{ with } \mathbf{r} \text{ the residual.}$ Considered the data are noisy and/or are correlated we can apply a weighting in the misfit function to account for that:

$$\begin{split} \Phi(\boldsymbol{m}) &= \sqrt{(\boldsymbol{W}\boldsymbol{r})^{\mathrm{T}}(\boldsymbol{W}\boldsymbol{r})}, \text{ with } \boldsymbol{W} \text{ being a of weighting vector, or} \\ \Phi(\boldsymbol{m}) &= \sqrt{\boldsymbol{r}^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{r}}, \text{ with } \boldsymbol{\Sigma} \text{ being the data error covariance matrix.} \end{split}$$

The model parameter space

The Model Parameter Space

- is spanned by all (N) model parameters and is therefore N-dimensional.
- it is finite, however, given physical constraints and prior information.

H. Sudhaus

Exercises - Direct Search #2 (automatically)

Purpose: Implementations and trying-out of simple Monte Carlo Optimizations.

On your virtual machines: Go to /home/jissy/Documents/2_Tuesday/EQ_geodesy/optitools_octave Open Nonlin_Kleifar_course_1.m

Editing:

Setting model parameter bounds: edit lines 99 & 100 Setting optimization options for evolution: edit line 148 run Nonlin_Kleifar_course_1 in octave run Nonlin_Kleifar_course_2 in octave

or (for Simulated Annealing) Setting optimization options: uncomment line 156 in Nonlin_Kleifar_course_2.m: comment line 9, uncomment line 11

run Plot_Model_Parameters.m and Plot_Model_Predictions.m to see your results.

Flow of Simulated Annealing

Exercises - Two Monte Carlo Flow Charts

Flow of an Evolutionary Algorithm

Data Sources and Processing Software for GPS and InSAF

Extra Information on the following slides ...

Data Sources and Processing Software for GPS and InSAF

SAR Roundtable, January 8, 2014

Mission Specifications

name/operated by	ERS-1/2, Envisat, Sentinel European Space Agency (ESA)	TerraSAR-X, TanDEM-X Deutsches Zentrum f. Luft- u. Raumfahrt (DLR)	JERS & ALOS-1/2 J apan Aerospace Exploration Agency (JAXA)	Radarsat-1/2 Canadian space agency (CSA)
online catalog	Catalog EOLI-SA (download and install from http://earth.esa.int/EOLi/EOLI.html)	EOWEB: https://centaurus.caf.dlr.de:8443/ infos: http://terrasar-x.dlr.de/	J ERS: Catalog at https://www.gportal.jaxa.jp ALOS-1:Catalog: https://auig.eoc.jaxa.jp/	https://neodf.nrcan.gc.ca/neodf_cat3/
revisittimes	ERS-1/2, Envisat: 36 days (future) Sentinel-1: 12 days	Terra-SAR-X & Tandem-X: 11 days (future) Tandem-L: no info found	J ERS & ALOS-1: 36 days (future) ALOS-2: 14 days	Radarsat-1/2: 24 days (future) Radarsat Constellation: 4 days!
Band	C-band	X-band	L-band	C-band
coverage	Huge data set with world wide coverage	Coverage only on demand - no background mission!	Global coverage with a concentration in Asia	Focus on permafrostylice covered globe, good coverage over northern hemisphere and science hot spots, e.g. Iceland, Hawaii
data availability (for research)	More no teos finely available for registrent cares via EOLSA Sentinal data @ https://schub.esa.int Enter-mission.Sentin-1: 2004 - 7 Group freeSubton 3 m in az / 25 m in ap Sentin schub in 3 m in az / 25 m in ap Sentin schub in 200 km for Einsteit wahr schub in Care model form District Editas No GPJ and from Feb 2001 hundle with schub Biblioting the sent-order dering biblioting terfs-band from Feb 2001 hundles with schub in my de thoman of the schub in my de thoman of the schub in the schub in my de thoman of the schub in my de thoman of the schub in the schub in my de thoman of the schub in the schub in my de thoman of the schub in the schub	Research scene charges are about 400 EUR, for researchers with a proposal at DLR a limited amount of data is free - check for opportunities (in particular for GFZ access is easier, in case ask T. Walter or M. Motagh).	JERS: normal charges ~19 US \$ per scene, ALOS: Access via EoLISA for some (!) areas Or (JERS & ALOS) for free for researchers with an accepted proposal (check for opportunities* at http://www.eorc.jaxa.jp/ALOS/en/ra/schedule.htm	Available for paying costumers at a charge of 3000 - 4000 EUR per scene, or some few scenes (<20) via research proposals (check for opportunities" at http://www.asc-csa.gc.ca/eng/ao/default.asp)
varla		Swath width is different for different: observation mode (2 km up to 200 km) Extrast: there may be restlictions to order/get data over militarywise sensitive annas involving a lot of administration and also money (at least: 30 per scene or 200 EUR)	Ground resolution 4 m in azimuth, 25 m in range, Swath with – 70 km	short partnets: COBMO Sky med., by Italian Space Agency (A2I), is a constatiation of 4 x hand SARs satellites, short revisit three, into at http://www.e-goosit, openating since 2007 with two safs: restricted data swaliability. RISAT-1, by the Indian Space Research Organization (FSIC), openating since April 2012, C-band satellite.

GPS Data

Data Sources:

- from collaborators or your own network
- from published work
- https://unavco.org/data/data.html

Processing software:

- e.g. GAMIT, consult unavco page above
 Bernese: www.bernese.unibe.ch/
- https://unavco.org/data/data.html

InSAR Processing software

- **GMTSAR**: InSAR processing system based on GMT (Scripps/San Diego, Hawaii)
- DORIS: Delft object-oriented radar interferometric software (TU Delft)
- ROI_PAC: Similar to GAMMA, deprecated
- **ISCE**: InSAR Scientific Computing Environment (JPL, Caltech, Standford), ROI_PAC offspring

GAMMA: commercial, GAMMA Remote Sensing AG, Switzerland

SARscape: commercial, but the only software with a graphical user interface, based on ENVI, SARmap SA, Switzerland

InSAR Time-series solver

- **StaMPS**: Stanford Method of Persistent Scatterers, developed by Andy Hooper (Stanford U, TU Delft, Leeds U), based on DORIS output, PS technique
- π -RATE: (Poly-Interferogram Rate And Time-series Estimator), Matlab toolbox developed by Biggs, Elliott, Wang (Leeds U), uses full interferograms processed with ROI_PAC
- GIAnT: Generic InSAR Analysis Toolbox, based on ISCE IPTA (GAMMA): Interferogram Point Target Analysis, PS technique

Literature on deformation modeling

Chapters:

- Deformation, Stress, Conservation Laws
- Dislocation Models of Strike-slip Faults
- Dip-Slip Faults and 3D Dislocations
- Crack Models of Faults
- Elastic Heterogeneity
- Postseismic Relaxation
- Volcano Deformation
- Topography and Earth Curvature
- Gravitational Effects
- Poroelastic Effects
- Fault Friction
- Interseismic Deformation

(library at Princeton Press, ~90 EUR c A

Literature on deformation modeling

On moodle:

- Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, *Bull. Seism. Soc. Am.*, 75(4), 1135-1154.
- Mogi, K. (1958), Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them, *Bull. Earthquake Res. Inst.*, 36, 99-134.