
Numerical optimization and adjoint state methods for large-scale
nonlinear least-squares problems

Ludovic Métivier1 and the SEISCOPE group1,2,3

1 LJK, Univ. Grenoble Alpes, CNRS, Grenoble, France
2 ISTerre, Univ. Grenoble Alpes, CNRS, Grenoble, France
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Nonlinear least-squares problem

In this presentation, we will consider the inverse problem

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2

where

dobs are data associated with a physical phenomenon and a measurement
protocol: seismic waves, electromagnetic waves, gravimeter, ultrasounds,
x-ray,...

m is the parameter of interest we want to reconstruct: P and S-wave
velocities, density, anisotropy parameters, attenuation, or a collection of these
parameters

dcal (m) are synthetic data, computed numerically, often through the solution
of partial differential equations

f (m) is a misfit function which measures the discrepancy between observed
and synthetic data
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Nonlinear least-squares problem

In this presentation, we will consider the inverse problem

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2

Of course, in joint inversion, we may consider a misfit function as a sum of these
functions associated with different measurements: the theory remains the same
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Nonlinear least-squares problem

In this presentation, we will consider the inverse problem

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2

We will also assume that f (m) is a continuous and twice differentiable
function: the gradient is continuous, and the second-order derivatives matrix
H(m) (Hessian matrix) is also continuous

The methods we are going to review are local optimization method: we put
aside the global optimization methods and stochastic/genetic algorithms
which are unaffordable for large-scale optimization problems

All the methods we review are presented in (Nocedal and Wright, 2006)
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Necessary condition

To detect the extremum of a differentiable function f (m), we have the necessary
condition

∇f (m) = 0
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Necessary condition

To detect the extremum of a differentiable function f (m), we have the necessary
condition

∇f (m) = 0

This is not enough: is it a minimum or maximum?
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Necessary and sufficient conditions

In a local minimum, the function is locally convex: the Hessian is definite positive

∇f (m) = 0, ∇2f (m) > 0



Local methods to find the minimum of a function

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 6 / 31

Practical implementation

However, this not what we implement in practice. From an initial guess m0, a
sequence mk is built such that

the limit m∗ should satisfy the necessary condition

∇f (m∗) = 0

at each iteration
f (mk+1) < f (mk )

We have to guarantee the decrease of the misfit function at each iteration
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The fixed-point method

We want to find m∗ such that

∇f (m∗) = 0 (1)

The simplest method is to apply the fixed point iteration on I − α∇f

mk+1 = (I − α∇f )mk = mk − α∇f (mk ), α ∈ R+
∗

At convergence we should have

m∗ = (I − α∇f )m∗ = m∗ − α∇f (m∗) =⇒ ∇f (m∗) = 0
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Ensuring the decrease of the misfit function

We need to ensure
f (mk+1) < f (mk )

We have
f (m + dm) = f (m) +∇f (m)T dm + o(||dm||2)

Therefore, if
mk+1 = mk − α∇f (mk ),

we have

f (mk+1) = f (mk − α∇f (mk )) = f (mk )− α∇f (mk )T∇f (mk ) + α2o(||∇f (mk )‖2

that is
f (mk+1) = f (mk )− α||∇f (mk )T ||2 + α2o(||∇f (mk )‖2

Therefore for α small enough, we can ensure the decrease condition
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Fixed point on I − αF = steepest-descent method

To summarize, using the fixed-point iteration on I − α∇f (m) yields the sequence

mk+1 = mk − α∇f (mk ),

We have just rediscovered the steepest-decent iteration
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Newton method: graphical interpretation

A faster (quadratic) convergence can be achieved for finding the zero ∇f (m) if we
use the Newton method.



How to find the zero of the gradient: second-order method

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 10 / 31

Newton method

We approximate ∇f (mk+1) as its first-order Taylor development mk

∇f (mk+1) ' ∇f (mk ) +

„
∂∇f (mk )

∂mk

«
(mk+1 −mk ) (1)

We look for the zero of this approximation

∇f (mk ) +

„
∂∇f (mk )

∂mk

«
(mk+1 −mk ) = 0 (2)

which yields

mk+1 = mk −
„
∂∇f (mk )

∂mk

«−1

∇f (mk )
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Notations

In the following, we use the notation

∂∇f (mk )

∂mk
= H(mk ) (1)

for the Hessian operator (second-order derivatives of the misfit function).
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Decrease of the misfit function

Do we ensure the decrease of the misfit function?

f (mk+1) = f (mk − αkH(mk )−1∇f (mk ))
= f (mk )− αk∇f (mk )T H(mk )−1∇f (mk ) + α2

ko(||H(mk )−1∇f (mk )‖2

We have
∇f (mk )T H(mk )−1∇f (mk ) > 0 (1)

if and only if H(mk )−1 > 0.
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Difficulties

The Hessian operator may not be necessary strictly positive: the function
f (m) may not be strictly convex as the forward problem is nonlinear (f (m) is
not quadratic)

For large-scale application, how to compute H(m) and its inverse H(m−1)?
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Principle

l-BFGS method (Nocedal, 1980) relies on the iterative scheme

mk+1 = mk − αkQk∇f (mk ) (1)

where
Qk ' H(mk )−1, sym > 0 (2)

and
αk ∈ R+

∗ (3)

is a scalar parameter computed through a linesearch process
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l-BFGS approximation

The l-BFGS approximation consists in defining Qk as

Qk =
`
V T

k−1 . . .V
T
k−l

´
Q0

k (Vk−l . . .Vk−1)
+ρk−l

`
V T

k−1 . . .V
T
k−l+1

´
sk−ls

T
k−l (Vk−l+1 . . .Vk−1)

+ρk−l+1

`
V T

k−1 . . .V
T
k−l+2

´
sk−l+1s

T
k−l+1 (Vk−l+2 . . .Vk−1)

+ . . .

+ρk−1sk−1s
T
k−1,

(1)

where the pairs sk , yk are

sk = mk+1 −mk , yk = ∇f (mk+1)−∇f (mk ), (2)

the scalar ρk are

ρk =
1

yT
k sk

, (3)

and the matrices Vk are defined by

Vk = I − ρkyks
T
k . (4)
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Implementation: two-loops recursion
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Principle

The truncated Newton method (Nash, 2000) relies on the iterative scheme

mk+1 = mk + αk ∆mk (1)

where ∆mk is computed as an approximate solution of the linear system

H(mk )∆mk = −∇f (mk ) (2)
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Principle

The truncated Newton method (Nash, 2000) relies on the iterative scheme

mk+1 = mk + αk ∆mk (1)

where ∆mk is computed as an approximate solution of the linear system

H(mk )∆mk = −∇f (mk ) (2)

Implementation

A matrix-free conjugate gradient is used to solve this linear system (Saad,
2003)

This only requires the capability to compute matrix-vector products H(mk )v
for given vectors v : the full Hessian matrix needs not to be formed explicitly

The resulting approximation of the Hessian only accounts for positive
eigenvalues of H(mk ): ∆mk is ensured to be a descent direction



Outline

1 Numerical optimization methods for large-scale smooth unconstrained minimization problems
Numerical optimization for nonlinear least-squares problems
Steepest descent method
Newton method
Quasi-Newton methods
What about the nonlinear conjugate gradient?
Summary

2 First-order and second-order adjoint state methods for gradient and Hessian-vector products
computation

3 Summary

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 14 / 31



Conjugate gradient

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 15 / 31

Conjugate gradient for symmetric positive linear systems

The conjugate gradient is an iterative method for the solution of symmetric
positive definite linear systems

Am = b (3)

The method enjoys several interesting properties

Convergence in at most n iterations for a system of size n (ok)

Fast convergence rate possible depending on the eigenvalues distribution of
A: in practice, an acceptable approximation of the solution can be obtained
in k iterations with k << n
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Only matrix-vector products to perform

Implementation
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Nonlinear conjugate gradient

How to extend the conjugate gradient for the solution of nonlinear minimization
problems? There is a link: solving

Am = b (3)

where A is symmetric positive definite is equivalent to solve

min
m

f (m) = mT Am −mT b (4)

because
∇f (m) = Am − b (5)

and f is strictly convex (a single extremum which is a minimum)
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Implementation

Simply replace r in the preceding algorithm by ∇f (m)
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An iterative scheme for local optimization

We have seen 4 different methods all based on the same iterative scheme

mk+1 = mk + αk ∆mk (3)
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An iterative scheme for local optimization

We have seen 4 different methods all based on the same iterative scheme

mk+1 = mk + αk ∆mk (3)

Nonlinear optimization methods

The four method only differ in the way to compute ∆mk

Steepest descent ∆mk = −∇f (mk )
Nonlinear CG ∆mk = −∇f (mk ) + βk ∆mk−1

l-BFGS ∆mk = −Qk∇f (mk ), Qk ' H−1
k

Truncated Newton H(mk )∆mk = −∇f (mk ) (solved with CG)
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Large-scale applications

From this quick overview we see that the two key quantities to be estimated for
the solution of

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2 (3)

are

The gradient of the misfit function ∇f (m)

Hessian vector products H(m)v for a given v (only for the truncated Newton
method)

We shall see in the next part how to compute it at a reasonable
computational cost (memory imprint and flops) for large-scale applications

using adjoint state methods
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Framework

We consider the problem

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2
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For a perturbation dm we have

f (m + dm) =
1

2
‖dcal (m + dm)− dobs‖2

1

2
‖dcal (m)− dobs + J(m)dm + o(‖dm‖2)‖2

where

J(m) =
∂dcal

∂m

is the Jacobian matrix
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For a perturbation dm we have

f (m + dm) =
1

2
‖dcal (m + dm)− dobs‖2

1

2
‖dcal (m)− dobs + J(m)dm + o(‖dm‖2)‖2

where

J(m) =
∂dcal

∂m

is the Jacobian matrix

f (m + dm) =
1

2
‖dcal (m)− dobs‖2 + (dcal − dobs , J(m)dm) + o(‖dm‖2)

1

2
‖dcal (m)− dobs‖2 +

“
J(m)T (dcal − dobs ) , dm

”
+ o(‖dm‖2)
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For a perturbation dm we have

f (m + dm) =
1

2
‖dcal (m + dm)− dobs‖2

1

2
‖dcal (m)− dobs + J(m)dm + o(‖dm‖2)‖2

where

J(m) =
∂dcal

∂m

is the Jacobian matrix

f (m + dm) =
1

2
‖dcal (m)− dobs‖2 + (dcal − dobs , J(m)dm) + o(‖dm‖2)

1

2
‖dcal (m)− dobs‖2 +

“
J(m)T (dcal − dobs ) , dm

”
+ o(‖dm‖2)

Therefore

f (m + dm)− f (m) =
“
J(m)T (dcal − dobs ) , dm

”
+ o(‖dm‖2)
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For a perturbation dm we have

f (m + dm) =
1

2
‖dcal (m + dm)− dobs‖2

1

2
‖dcal (m)− dobs + J(m)dm + o(‖dm‖2)‖2

where

J(m) =
∂dcal

∂m

is the Jacobian matrix

f (m + dm) =
1

2
‖dcal (m)− dobs‖2 + (dcal − dobs , J(m)dm) + o(‖dm‖2)

1

2
‖dcal (m)− dobs‖2 +

“
J(m)T (dcal − dobs ) , dm

”
+ o(‖dm‖2)

Therefore

f (m + dm)− f (m) =
“
J(m)T (dcal − dobs ) , dm

”
+ o(‖dm‖2)

∇f (m) = J(m)T (dcal − dobs )
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Implementation for large-scale applications

The size of J(m) can be problematic for large scale applications

After discretization it is a matrix with N rows and M columns where

1. N is the number of discrete data

2. M is the number of discrete model parameters

For Full Waveform Inversion for instance, we can have approximately

N ' 1010, M ' 109

This prevents from

1. Computing J(m) at each iteration of the inversion

2. Storing J(m) (or on disk but then expensive I/O and the performance
severely decreases)
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Can we avoid computing the Jacobian matrix?

Yes, using adjoint state methods
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Specializing the forward problem

Now the problem is specialized such that

dcal (m) = Ru(m)

where u(m) satisfies
A(m, ∂x , ∂y , ∂z )u = s,

u is the solution of the PDE (wavefield for instance) in all the volume

R is an extraction operator as, most of the time, only partial measurements
are available



First-order adjoint state method

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 22 / 31

References

Adjoint state method come from optimal control theory and preliminary work
of (Lions, 1968)

It has been first applied to seismic imaging by (Chavent, 1974)

A nice review of its application in this field has been proposed by (Plessix,
2006)
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The Lagrangian function

From constrained optimization, we introduce the function

L(m, u, λ) =
1

2
‖Ru − d‖2 + (A(m, ∂x , ∂y , ∂z )u − s, λ)
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The Lagrangian function

From constrained optimization, we introduce the function

L(m, u, λ) =
1

2
‖Ru − d‖2 + (A(m, ∂x , ∂y , ∂z )u − s, λ)

Link with the misfit function

Let u(m) be the solution of the forward problem for a given m, then

L(m, u(m), λ) =
1

2
‖Ru(m)− d‖2 = f (m)
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The Lagrangian function

From constrained optimization, we introduce the function

L(m, u, λ) =
1

2
‖Ru − d‖2 + (A(m, ∂x , ∂y , ∂z )u − s, λ)

Link with the misfit function

Let u(m) be the solution of the forward problem for a given m, then

L(m, u(m), λ) =
1

2
‖Ru(m)− d‖2 = f (m)

Link with the gradient of the misfit function

Therefore
∂L(m, u(m), λ)

∂m
= ∇f (m)
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Expending

This means that„
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ

«
+
∂L(m, u(m), λ)

∂u

∂u(m)

∂m
= ∇f (m)
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Expending

This means that„
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ

«
+
∂L(m, u(m), λ)

∂u

∂u(m)

∂m
= ∇f (m)

Potential simplification

Therefore, if we define λ(m) such that

∂L
`
m, u(m), λ(m)

´
∂u

= 0

we have „
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ(m)

«
= ∇f (m)



First-order adjoint state method

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 23 / 31

Adjoint state formula

What does mean
∂L
`
m, u(m), λ(m)

´
∂u

= 0?
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Consider a perturbation du. We have

L(m, u + du, λ) =
1

2
‖Ru − dobs + Rdu‖2 + (A(m)u − s + A(m)du, λ)

=
1

2
‖Ru − dobs‖2 + (Ru − dobs ,Rdu) + (A(m)u − s, , λ)

+ (A(m)du, λ) + o(‖du‖2)

= L(m, u, λ) +
“
RT (Ru − dobs ), du

”
+
“
du,A(m)Tλ

”
+ o(‖du‖2)

= L(m, u, λ) +
“
A(m)Tλ+ RT (Ru − dobs ), du

”
+ o(‖du‖2)
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Consider a perturbation du. We have

L(m, u + du, λ) =
1

2
‖Ru − dobs + Rdu‖2 + (A(m)u − s + A(m)du, λ)

=
1

2
‖Ru − dobs‖2 + (Ru − dobs ,Rdu) + (A(m)u − s, , λ)

+ (A(m)du, λ) + o(‖du‖2)

= L(m, u, λ) +
“
RT (Ru − dobs ), du

”
+
“
du,A(m)Tλ

”
+ o(‖du‖2)

= L(m, u, λ) +
“
A(m)Tλ+ RT (Ru − dobs ), du

”
+ o(‖du‖2)

Therefore
∂L
`
m, u(m), λ(m)

´
∂u

= A(m)Tλ+ RT (Ru − dobs )
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Adjoint state equation

Remember we are looking for λ(m) such that

∂L
`
m, u(m), λ(m)

´
∂u

= 0

This simply means that λ(m) should be the solution of the adjoint PDE

A(m)Tλ+ RT (Ru(m)− dobs ) = 0
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Adjoint state equation

Remember we are looking for λ(m) such that

∂L
`
m, u(m), λ(m)

´
∂u

= 0

This simply means that λ(m) should be the solution of the adjoint PDE

A(m)Tλ+ RT (Ru(m)− dobs ) = 0

Self-adjoint case

In some cases, the forward problem is self adjoint, and the adjoint state λ(m)
is the solution of the same equation than u(m) except that the source term is
different

In addition, the source term implies u(m) has been computed before hand, as
it depends on this field
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Summary

We have seen that we can compute the gradient of the misfit function
following the formula

∇f (m) =

„
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ(m)

«
where u(m) satisfies

A(m, ∂x , ∂y , ∂z )u = s,

and λ(m) satisfies

A(m, ∂x , ∂y , ∂z )Tλ+ RT (Ru(m)− dobs ) = 0
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Implementation issues

What are the benefits of the adjoint-state approach?

To compute the gradient, we first have to compute u(m): first PDE solve

Then we compute λ(m): second PDE solve

Finally we form the gradient through the formula

∇f (m) =

„
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ(m)

«
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Implementation issues

What are the benefits of the adjoint-state approach?

To compute the gradient, we first have to compute u(m): first PDE solve

Then we compute λ(m): second PDE solve

Finally we form the gradient through the formula

∇f (m) =

„
∂A(m, ∂x , ∂y , ∂z )

∂m
u(m), λ(m)

«

The Jacobian matrix has never to be formed nor stored explicitly!



Outline

1 Numerical optimization methods for large-scale smooth unconstrained minimization problems

2 First-order and second-order adjoint state methods for gradient and Hessian-vector products
computation

Gradient computation of a nonlinear least-squares function
First-order adjoint state method
Second-order adjoint state method

3 Summary

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 24 / 31



Second-order adjoint state method

L. Métivier (LJK, CNRS) Numerical optimization 06/16/2015 Joint Inversion School 25 / 31

Computing Hessian-vector product

We have seen that in the particular case of the truncated Newton method, it is
required to know how to compute, for any v , the Hessian-matrix product

H(m)v ,

However, as it is the case for the Jacobian matrix J(m) the size of matrix H(m)
for large-scale application is such that it cannot be computed explicitly nor stored

Again, the adjoint-state method should allow us to overcome this difficulty
see (Fichtner and Trampert, 2011; Epanomeritakis et al., 2008; Métivier et al.,

2013)
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Principle of the method

Consider the function
hv (m) = (∇f (m), v)
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Principle of the method

Consider the function
hv (m) = (∇f (m), v)

For a perturbation dm we have

hv (m + dm) = (∇f (m + dm), v)

= (∇f (m) + H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (dm,H(m)v) + o(‖dm‖2)

= hv (m) + (dm,H(m)v) + o(‖dm‖2)
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Principle of the method

Consider the function
hv (m) = (∇f (m), v)

For a perturbation dm we have

hv (m + dm) = (∇f (m + dm), v)

= (∇f (m) + H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (dm,H(m)v) + o(‖dm‖2)

= hv (m) + (dm,H(m)v) + o(‖dm‖2)

Hv through the gradient of hv

Therefore
∇hv (m) = H(m)v
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Principle of the method

Consider the function
hv (m) = (∇f (m), v)

For a perturbation dm we have

hv (m + dm) = (∇f (m + dm), v)

= (∇f (m) + H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (H(m)dm, v) + o(‖dm‖2)

= (∇f (m), v) + (dm,H(m)v) + o(‖dm‖2)

= hv (m) + (dm,H(m)v) + o(‖dm‖2)

Hv through the gradient of hv

Therefore
∇hv (m) = H(m)v

All we have to do is to apply the previous strategy to the function hv (m)!
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Consider the new Lagrangian function

Lv (m, u, λ, g , µ1, µ2, µ3) = (g , v) +

 „
∂A(m)

∂m
u

«T

λ− g , µ1

!
+

(A(m)Tλ− RT (Ru − d), µ2)+

(A(m)u − s, µ3)
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Consider the new Lagrangian function

Lv (m, u, λ, g , µ1, µ2, µ3) = (g , v) +

 „
∂A(m)

∂m
u

«T

λ− g , µ1

!
+

(A(m)Tλ− RT (Ru − d), µ2)+

(A(m)u − s, µ3)

For u = u(m), λ = λ(m), g = g(m) respectively solutions of

A(m)u = s, A(m)Tλ = RT (Ru(m)− dobs ), g(m) =

„
∂A(m)

∂m
u(m)

«T

λ(m)

we have
Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3) = hv (m)
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Consider the new Lagrangian function

Lv (m, u, λ, g , µ1, µ2, µ3) = (g , v) +

 „
∂A(m)

∂m
u

«T

λ− g , µ1

!
+

(A(m)Tλ− RT (Ru − d), µ2)+

(A(m)u − s, µ3)

For u = u(m), λ = λ(m), g = g(m) respectively solutions of

A(m)u = s, A(m)Tλ = RT (Ru(m)− dobs ), g(m) =

„
∂A(m)

∂m
u(m)

«T

λ(m)

we have
Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3) = hv (m)

Hence
∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂m
= ∇hv (m) = H(m)v
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Again, we develop the previous expression

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂m
= „

∂2A(m)

∂m2
u(m)

«T

λ(m), µ1

!
+

„
∂A(m)T

∂m
λ(m), µ2

«
+

„
∂A(m)

∂m
u(m), µ3

«
+

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂u

∂u

∂m
+

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂λ

∂λ

∂m
+

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂g

∂g

∂m
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Now we look for µ1, µ2, µ3 such that8>>>>>>>><>>>>>>>>:

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂u
= 0

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂λ
= 0

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂g
= 0
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Now we look for µ1, µ2, µ3 such that8>>>>>>>><>>>>>>>>:

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂u
= 0

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂λ
= 0

∂Lv (m, u(m), λ(m), g(m), µ1, µ2, µ3)

∂g
= 0

This is equivalent to8>>>>>>>><>>>>>>>>:

„
∂A

∂m
µ1

«T

λ(m) + RT Rµ2 + A(m)Tµ3 = 0

„
∂A

∂m
u(m)

«T

µ1 + A(m)µ2 = 0

v − µ1 = 0
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Reorganizing these equations, we find that8>>>>>>>><>>>>>>>>:

µ1 = v

A(m)µ2 = −
„
∂A

∂m
u(m)

«T

v

A(m)Tµ3 = −
„
∂A

∂m
v

«T

λ(m) + RT Rµ2
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Reorganizing these equations, we find that8>>>>>>>><>>>>>>>>:

µ1 = v

A(m)µ2 = −
„
∂A

∂m
u(m)

«T

v

A(m)Tµ3 = −
„
∂A

∂m
v

«T

λ(m) + RT Rµ2

Implementation

µ1 is given for free: it is v

µ2 is the solution of a forward problem involving a new source term which
depends on v and u(m)

µ3 is the solution of an adjoint problem involving a new source term which
depends on b, λ(m) and µ2
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Summary

The computation of H(m)v for a given v can be obtained through the formula

H(m)v =

 „
∂2A(m)

∂m2
u(m)

«T

λ(m), µ1

!
+„

∂A(m)T

∂m
λ(m), µ2

«
+

„
∂A(m)

∂m
u(m), µ3

« (4)
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Summary

The computation of H(m)v for a given v can be obtained through the formula

H(m)v =

 „
∂2A(m)

∂m2
u(m)

«T

λ(m), µ1

!
+„

∂A(m)T

∂m
λ(m), µ2

«
+

„
∂A(m)

∂m
u(m), µ3

« (4)

where

Forward and adjoint simulations

u(m) is computed as a solution of the forward problem

λ(m) is computed as a solution of the adjoint problem

µ2 is computed as a solution of the forward problem for a new source term

µ3 is computed as a solution of the adjoint problem for a new source term



Outline

1 Numerical optimization methods for large-scale smooth unconstrained minimization problems
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3 Summary
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Optimization methods for nonlinear least-squares problems

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2
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Optimization methods for nonlinear least-squares problems

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2

An iterative scheme for local optimization

Local optimization methods are all based on the same iterative scheme

mk+1 = mk + αk ∆mk (5)
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Optimization methods for nonlinear least-squares problems

min
m

f (m) =
1

2
‖dcal (m)− dobs‖2

An iterative scheme for local optimization

Local optimization methods are all based on the same iterative scheme

mk+1 = mk + αk ∆mk (5)

Four Nonlinear optimization methods

The differences come from the computation of ∆mk

Steepest descent ∆mk = −∇f (mk )
Nonlinear CG ∆mk = −∇f (mk ) + βk ∆mk−1

l-BFGS ∆mk = −Qk∇f (mk ), Qk ' H−1
k

Truncated Newton H(mk )∆mk = −∇f (mk ) (solved with CG)
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Adjoint methods

The gradient can be computed through the first-order adjoint method at the price

1 forward modeling

1 adjoint modeling

The Hessian-vector product (only required for truncated Newton) can be
computed through second-order adjoint method at the price

1 additional forward modeling

1 additional adjoint modeling



SEISCOPE Toolbox

A set of optimization routines in FORTRAN90

Optimization routines for differentiable functions

Steepest-descent, nonlinear conjugate gradient

l-BFGS, truncated Newton

Implemented using a reverse communication protocol: the user is in charge for
computing gradient and Hessian-vector product

Open-source code available here

https://seiscope2.obs.ujf-grenoble.fr/SEISCOPE-OPTIMIZATION-TOOLBOX
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https://seiscope2.obs.ujf-grenoble.fr/SEISCOPE-OPTIMIZATION-TOOLBOX
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