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S U M M A R Y
We present a 3-D joint inversion framework for seismic, magnetotelluric (MT) and scalar and
tensorial gravity data. Using large-scale optimization methods, parallel forward solvers and a
flexible implementation in terms of model parametrization allows us to investigate different
coupling approaches for the various physical parameters involved in the joint inversion. Here
we compare two different coupling approaches, direct parameter coupling where we calculate
conductivities and densities from seismic slownesses and cross-gradient coupling, where each
model cell has an independent value for each physical property and a structural similarity is
enforced through a term in the objective function.

For both types of approaches we see an improvement of the inversion results over single
inversions when the inverted data sets are generated from compatible models. As expected
the direct coupling approach results in a stronger interaction between the data sets and in this
case better results compared to the cross-gradient coupling. In contrast, when the inverted MT
data is generated from a model that violates the parameter relationship in some regions but
conforms with the cross-gradient assumptions, we obtain good results with the cross-gradient
approach, while the direct coupling approach results in spurious features. This makes the
cross-gradient approach the first choice for regions were a direct relationship between the
physical parameters is unclear.

Key words: Inverse theory; Gravity anomalies and Earth structure; Magnetotelluric; Seismic
tomography.

1 I N T RO D U C T I O N

All geophysical inversion methods are fraught with the problem
of non-uniqueness (e.g. Menke 1989; Muñoz & Rath 2006). Data
acquired in a geophysical survey is usually restricted to the surface
of the Earth or the shallow subsurface, often with relatively large
spacing between measurement sites, and affected by noise. In such
a situation different models can explain the observed data, creating
ambiguity in their interpretation (Tarantola 2004). Applying regu-
larization stabilizes the inversion and creates a model with certain
characteristics but does not alleviate the underlying problem (Parker
1983).

Joint inversion approaches promise to reduce the set of accept-
able models by combining several geophysical methods in a single
inversion scheme and requiring the resulting model to explain all
data simultaneously (Vozoff & Jupp 1975). Two factors help to
achieve this goal: First, different methods have different resolving
kernels and the null space for one type of data can be resolved by
the other (Julia et al. 2000); second, the sources of noise and its
impact on the data often differ so that adding another method can
improve the results more than adding more data of the same type.

Consequently joint inversion approaches have gained some atten-
tion recently (e.g. Gallardo & Meju 2004; Linde et al. 2006; Chen
et al. 2007; Colombo & Stefano 2007; Wagner et al. 2007).

The prize for the increased robustness is that we have to put in
assumptions about the relationships between the different types of
data. An apparently simple situation is where the models for all types
of data are described by the same physical parameter. For example,
Rayleigh waves and receiver functions are both usually modelled in
terms of S-wave velocity and thus joint inversion of these two data
sets seems straightforward. Receiver functions, however, sample the
Earth in a different way from surface waves and we have to take
care that both sample the same region (Julia et al. 2000) and assess
in how far these two types of data are compatible (Moorkamp et al.
2010b).

When combining data that are sensitive to different physical pa-
rameters, for example seismic velocity and conductivity, we have
to explicitly formulate a relationship between those physical pa-
rameters. Here we will focus on two approaches: Direct parameter
relationships where we specify a functional relation between the
parameters (Heincke et al. 2006; Jegen et al. 2009) and a structural
constraint, the cross-gradient (Gallardo & Meju 2003), that enforces

C© 2010 The Authors 477
Geophysical Journal International C© 2010 RAS

Geophysical Journal International



478 M. Moorkamp et al.

structural similarity between the different models. Other approaches
include using a parameter relationship as a constraint (Colombo &
Stefano 2007) or using a more stringent structural coupling (Haber
& Oldenburg 1997). Finally, statistical descriptions of the parameter
relationships (Bosch 1999, 2004) allow for an accurate description
of the variability and uncertainty of the assumed relationship. We
are currently working on a Bayesian methodology that incorporates
these and other uncertainties in order to investigate the reliability
of joint inversion models (Roberts et al. 2010).

Direct parameter relationships provide a strong coupling between
the data sets. The model is expressed in terms of a single physical
parameter and all other physical parameters needed for solving the
forward problems are calculated using an analytical relationship.
Consequently, the model update is influenced by the misfit of all
data sets (see below for a more detailed description). This strong
coupling promises a strong influence on the inversion process, but
it is obvious that when the assumed relationship is violated this will
distort the resulting model.

The cross-gradient approach makes few assumptions about the
relationship of the different parameters. Within the inversion we
minimize an objective function term that measures the structural
similarity between the different models. This means that the cross-
gradient criterion can be violated in parts of the model, but also the
cross-gradient as such provides a relatively loose coupling (Gallardo
et al. 2005). We can expect though that the improvement over a
single inversion is not as strong as for the direct parameter coupling.

It is therefore necessary to tailor the joint inversion approach to
the available a priori information. In areas where the data suggest
the possibility of a direct parameter relationship, utilizing this rela-
tionship promises improved resolution. In other areas it might not be
possible to uniquely define such a relationship or its existence might
be unknown or doubtful. In those cases the cross-gradient provides
an adequate coupling strategy for joint inversion. In any case it is
necessary to carefully assess the resulting models and compare the
results from individual inversions with joint inversion results using
different coupling strategies.

For this purpose we have developed a flexible 3-D joint inversion
framework that allows us to test different joint inversion approaches.
We first discuss the different types of data that we can include
in the joint inversion and the motivation for using each type of
data. Then we give an overview over the different parts of the
joint inversion framework, the large scale optimization algorithms,
objective function definition, model parametrization and forward
and gradient calculation. Finally we use a simple synthetic example
to compare two joint inversion approaches with single inversion
results and discuss the properties of our joint inversion approach.

2 T H E DATA S E T S

Before we describe the joint inversion algorithm we briefly discuss
the different types of data we use for joint inversion. As the focus
of the paper is on the inversion method we restrict ourselves to
the most important properties of each method and the rationale for
including this type of data in the joint inversion.

Seismic tomography based on first arrival traveltimes is one of
the main methods to construct seismic velocity models of the sub-
surface (e.g. Zelt & Smith 1992). This method can be used both
with active source data (e.g. Di Stefano & Chiarabba 2002) and
passive seismological data (e.g. Ritter et al. 2001). In both cases it
is necessary to identify the first arrival from a given source on the
recorded seismograms. These first arrival picks then form the data
that is used as input for the inversion. The solution to the forward

problem can be obtained by solving the eikonal equation (Podvin
& Lecomte 1991) or ray tracing through the velocity model (Zelt &
Smith 1992). In regions with good ray coverage seismic tomography
can provide relatively high-resolution velocity models.

Scalar gravity data, that is, the vertical component of gravitational
acceleration U z, are often used to quickly map the density distribu-
tion in a large area (e.g. Zanolla et al. 2006). Due to their limited
resolution, gravity data are usually explained by forward modelling
(e.g. Barrère et al. 2009) or constrained inversion (e.g. Welford &
Hall 2007). In joint inversion schemes gravity can provide valuable
additional information for the inversion by further constraining den-
sity that other data, for example surface waves, have only limited
sensitivity to (Maceira & Ammon 2009) and by filling gaps in data
coverage (Heincke et al. 2006; Vermeesch et al. 2009).

In addition to the first spatial derivative of the gravitational poten-
tial it is also possible to measure the elements of the second spatial
derivatives that form the so-called full gravity tensor � (FTG) (Li
& Chouteau 1998). Again this type of data is often used to produce
maps (Pedersen et al. 1990), but sometimes also inverted to produce
models of the density distribution (Droujinine et al. 2007). Being a
derivative of scalar gravity data it provides higher lateral resolution
but the sensitivity kernels decay more quickly with depth. Thus
FTG data are mostly sensitive to near surface structures and lateral
contrasts near the surface.

Magnetotellurics (MT) is a passive source electromagnetic
method. Assuming a plane electromagnetic wave impinging on the
surface of the Earth and measuring the horizontal components of
the resulting electric and magnetic fields, we can estimate the MT
impedance tensor Z whose elements purely depend on the conduc-
tivity distribution in the subsurface (Simpson & Bahr 2005). MT
is used extensively to study the conductivity of the crust and upper
mantle both on land (e.g. Brasse et al. 2009) and in marine envi-
ronments (e.g. Baba et al. 2006; Jegen et al. 2009). In recent years
it has also been used in marine exploration problems (Key et al.
2006; Constable et al. 2009) as it provides complementary infor-
mation to seismic surveys. Particularly for subsalt and subbasalt
problems, where seismic methods often have difficulty imaging the
areas below the salt or basalt, MT can provide valuable information
although with relatively lower resolution (Jegen et al. 2009).

Having the possibility to include these four types of data means
that we cover the most commonly used parameters in geophysical
surveys, seismic velocity, density and conductivity. Also, all types
of data can be used on a large range of scales from near-surface
studies through exploration problems to the scale of the crust and
mantle.

3 J O I N T I N V E R S I O N F R A M E W O R K

Fig. 1 shows an overview of the different parts of the joint inversion
framework and the forward solvers. The framework is separated
into different modules, each one with a specific responsibility. We
implement each module such that only the minimum required infor-
mation is exchanged between different parts and therefore we can
exchange each module relatively easily to test different optimiza-
tion methods, model parametrizations or forward solvers. Below we
discuss each of the constituents of the joint inversion framework.

3.1 Large scale optimization

For efficient 3-D inversion using optimization methods that scale
well to a large number of unknown parameters is essential. Two
main factors determine the suitability of an optimization method for
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Figure 1. The structure of the joint inversion algorithm. Each module can be exchanged and configured with minimal interference with other parts of the
algorithm. We show some of the options for various modules in red boxes.

large-scale inversion: the total computational cost and the memory
requirements (Newman & Alumbaugh 2000). Often the main factor
that determines the computational cost is the number of forward
model calculations. Typically methods that require only few forward
calculations, for example, Gauss–Newton methods, consume large
amounts of memory, while methods that require very little memory,
for example, steepest descent, have to perform a large number of
forward calculations. We therefore have to find the optimum trade-
off between these two factors.

For non-linear inversion Gauss–Newton methods usually require
only few forward model calculations to reach a minimum misfit.
For a problem with M model parameters and N data this method
requires the calculation of the N × M sensitivity matrix Gij = ∂di/

∂mj and the M × M approximation to the Hessian GT G. For seismic
tomography where G is sparse this approach is often employed
(e.g. Zelt et al. 2006; Vermeesch et al. 2009). When the sensitivity
matrix is fully occupied as for MT and gravity inversion, storing a
M × M matrix severely limits the maximum model size that can be
handled with this approach. This can be to some degree remedied by
using a data-space Gauss–Newton approach (Siripunvaraporn et al.
2005), but even then we have to store the N × M sensitivity matrix
which for joint inversion with large amounts of data is not feasible.

Quasi–Newton and conjugate gradient methods only require the
derivative ∇� = ∂�/∂m of the objective function � with respect
to the model parameters m. Two algorithms are commonly used
in large scale inversion, the non-linear conjugate gradient method
(NLCG) (Rodi & Mackie 2001; Commer & Newman 2009) or
a limited memory quasi-Newton approach (L-BFGS) (Avdeev &
Avdeeva 2009). Both methods are similar in the sense that they use
information from previous iterations to improve the current model
update. The main difference is that NLCG only uses the previous
model update and gradient, while L-BFGS uses a number ncp of
correction pairs that can be chosen by the user. NLCG therefore
only requires 2M extra storage, while L-BFGS requires 2ncp M extra
storage. As both algorithms have been described well in the literature
(e.g. Rodi & Mackie 2001; Tarantola 2004; Nocedal 2006), we only
outline the basic steps.

Given a starting model m0 we perform a number of optimiza-
tion iterations until the value of the objective function �, the misfit
between observed and synthetic data, reaches a certain threshold;
we will discuss the details of the definition of misfit below. At each

iteration i we calculate the misfit and the gradient of the objective
function for the current model. Using NLCG or L-BFGS we trans-
form the gradient to a search direction pi, determine an optimum
step length μ using the line search procedure of Moré & Thuente
(1994) and update the current model

mi+1 = mi + μpi . (1)

We then store the necessary information from the current iteration,
check whether we have reached the target misfit and if not proceed
to the next iteration.

The core inversion algorithm has no knowledge of the meaning of
the inversion parameters m, it only perturbs the vector according to
the objective function and gradient values. This also implies that the
model parameters can assume any value including negative ones.
This is problematic if the inversion parameters are seismic velocities
or conductivities, for example, which are inherently positive. One
solution is to use a constrained optimization method (e.g. Avdeev &
Avdeeva 2009) that modifies the search direction or step length to
keep the parameters within a specified range. We instead constrain
the possible values of the physical parameters through appropriate
transformations in the model parametrization which we will discuss
below.

3.2 Objective function definition

The definition of the misfit in the objective function � determines
which models we consider an appropriate explanation for the ob-
served data. We follow the approach of Tarantola (2004) and define
the misfit for a model m with respect to a data set d as

�d (m) = [g(m) − dobs]
T C−1

d [g(m) − dobs] . (2)

Here g(m) is the synthetic data from the forward calculation for the
given model, dobs the vector of observed data and C−1

d the inverse
of the data covariance matrix. Including the data covariance in the
objective function reduces the influence of observations with large
errors and equalizes the influence of data with similar relative errors
irrespective of the magnitude of each datum. This latter property is
important for MT data, where the impedances at high frequencies
can be orders of magnitude larger than at low frequencies. In ad-
dition, this type of misfit definition gives us an objective criterion
for a sufficiently small data misfit, when �d(m) = N , where N is
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the number of observations, we explain the data within the assumed
observational errors (Tarantola 2004).

A geophysical inversion that only minimizes the misfit between
observed and synthetic data is ill-posed in the sense that the resulting
models show erratic parameter variations and do not resemble Earth
structures (e.g. Constable et al. 1987). In some cases the inversion
procedure even cannot proceed past the first few iterations and fails
to produce an acceptable misfit. By including some form of regular-
ization we can stabilize the inversion and produce smoothly varying
models that allow us to identify coherent structures (e.g. Jupp &
Vozoff 1975; Constable et al. 1987). This comes at the cost of in-
creased data misfit, although often we can still explain the data
within the observational errors.

The regularization functional we use for the joint inversion has
the form

�Reg(m) =
∑

i

αi (m − m0)T WT
i C−1

M Wi (m − m0)

+ β (m − m0)T C−1
M (m − m0) . (3)

We sum over the three axis directions i = {x , y, z} and weight
the contribution for each direction by a weight αi. The matrices
Wi are finite difference approximations to the first or second spa-
tial derivative of the model parameters in the respective direction
(e.g. Farquharson & Oldenburg 1998). Depending on the choice
of Wi we seek a model that has a minimum parameter variation
between adjacent cells or minimum curvature, respectively. m0 is
an a priori model that we can use to keep the inversion result close
to this reference model. We also include a term to minimize the
total value of the model vector, although we usually keep the corre-
sponding weight β small. Similarly to our definition of data misfit,
we can include a diagonal model covariance matrix CM . Changing
the entries of this matrix allows us to limit the variation of certain
parts of the model, for example to fix known structures.

For the structural joint inversion approach we can have a number
of cross-gradient terms (Gallardo & Meju 2003). These are used to
enforce structural similarity between the different physical proper-
ties in the inversion domain. The cross-gradient objective function
is defined as

�Cross(m) = (∇m1 × ∇m2)T C−1
M (∇m1 × ∇m2) . (4)

Here m1 and m2 correspond to the parts of the model vector m that
correspond to two different physical properties in the joint inver-
sion, for example seismic velocity and conductivity. This function
vanishes if the spatial gradients of the two models point in the
same direction, that is, both physical properties change in the same
direction, or one property remains constant. In these cases the mag-
nitude of the change does not have an influence on the value of the
cross-gradient functional. Only when both properties change, but
in different directions, the value of the functional is different from
zero. This type of structural coupling is relatively weak and can
be expected to hold within the Earth under very general conditions
and is therefore a popular coupling method for joint inversion ap-
proaches (e.g. Gallardo & Meju 2007; Hu et al. 2009). With these
different objective functions we obtain a joint inversion objective
functional of the form

�joint =
∑

i

�i . (5)

Here the index i denotes the various data misfit, regularization and
cross-gradient coupling terms. For the direct parameter coupling we
have

�joint = �d,seis + �d,grav + �d,FTG + �d,MT + �Reg, (6)

while for the cross-gradient coupling the full joint objective function
is

�joint = �d,seis + �d,grav + �d,FTG + �d,MT + �Reg,s + �Reg,ρ

+�Reg,σ + �Cross,s/ρ + �Cross,s/σ + �Cross,σ/ρ . (7)

Here the indices Reg, s, Reg, ρ and Reg, σ denote the regularization
for the slowness, density and conductivity section of the model vec-
tor, respectively. Cross, s/ρ, Cross, s/σ and Cross, σ/ρ denote the
cross-gradient terms between slowness and density, slowness and
conductivity and conductivity and density sections of the model
vector, respectively. We can achieve different weights between the
various terms of the objective function by dividing the respective
covariances by a factor α. For the regularization terms this is equiv-
alent to changing the Lagrangian multiplier (e.g. Constable et al.
1987) used in other formulations.

3.3 Model parametrization

The way that we parametrize the inversion model determines the
nature of the joint inversion to a large degree. In any case we divide
a region of the subsurface into rectangular blocks with constant
property values within each block. For the joint inversion with di-
rect parameter coupling we assign a single property value to each
block, for example, seismic slowness, and calculate the other phys-
ical properties through empirical relationships. In contrast, for the
joint inversion with structural coupling we assign a slowness, con-
ductivity and density value to each block and achieve the coupling
between the different methods through cross-gradient functionals.

In order to have maximum flexibility in terms of model
parametrization and coupling and allow for future experiments with
different strategies, we encapsulate the knowledge about the model
parametrization in a separate module in our joint inversion imple-
mentation. The core inversion algorithm operates on a vector of
generalized model parameters m. The objective functions for each
method in contrast expect the natural physical properties for the
respective method, that is, slowness for seismic tomography, con-
ductivity for MT and density for the two types of gravity data. We
therefore have to define three transformation functions s (m), σ (m)
and ρ (m) that translate between the generalized model parameters
and the physical parameters. This type of implementation has the
advantage that the coupling strategy for the joint inversion approach
is separate from both the inversion routine and the objective func-
tion for each method and thus can be changed relatively easily. In
terms of our joint inversion objective function it means that we have
a definition of the form

�Joint(m) = �Tomo[s(m)] + �MT [σ (m)] + �Grav[ρ(m)] + . . . ,
(8)

here the dots indicate possible regularization and cross-gradient
terms. We will now discuss this type of implementation in terms
of the direct coupling and cross-gradient coupling to make it more
clear.

For the direct coupling where we only have one value for each
inversion cell we have to chose one physical property as the main
inversion parameter, for example, slowness. As mentioned above
we want to restrict slowness to positive values and in most cases
even to a specified range of slowness values, for example, between
smin = 10−4 s m−1 and smax = 0.005 s m−1. We therefore define a
generalized parameter vector m and for the forward calculations
transform it to slowness using

s j (m j ) = smin + 1 + tanh(m j )

2
(smax − smin) (9)
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for each element mj of the generalized parameter vector. This way
each element of m can vary throughout the whole numerical range,
while the corresponding slowness values are guaranteed to be re-
stricted between smin and smax (Commer & Newman 2008).

Once we have calculated the slowness values we can use the pa-
rameter relationships to calculate the corresponding conductivities
and densities. Such parameter relationships can come from theoret-
ical considerations of rock properties or simply from empirical laws
derived from borehole data (Jegen et al. 2009). We use relationships
between slowness s (in s m−1) and conductivity σ (in S m−1) and
slowness and density ρ (in g cm−3) of the form (Heincke et al. 2006)

σ = exp
(−as2 − bs − c

)
, a = 2.31 × 10−7,

b = −5.79 × 10−4, c = 0.124, (10)

ρ = (1/s + 8500)/5000, (11)

for our synthetic examples.
For the cross-gradient coupling the generalized model vector m

contains three segments that correspond to slowness, conductivity
and density, respectively, viz.

m = (
ms mσ mρ

)
. (12)

Each segment uses a transformation of the form of eq. (9) to
reduce the range of possible parameter values, but with a different
maximum and minimum value for each segment. To calculate syn-
thetic data the corresponding segment of the model vector is passed
to the appropriate forward modelling algorithm.

3.4 Forward modelling

We use parallel forward solvers to calculate first arrival traveltimes,
MT impedances and scalar and tensor gravity data. The calculation
of traveltimes is based on the code of Podvin & Lecomte (1991),
but we can calculate solutions for different source positions in par-
allel. This type of parallelization is simple to implement, but with
hundreds of source positions in a typical survey, scales to large
clusters.

Both types of gravity data are calculated using a massively paral-
lel approach that can run either on a standard CPU or on a graphics
processing unit (GPU). GPUs are particularly suited for problems
where simple equations are applied to a large amount of data, such
as the calculation of acceleration due to a density distribution. With
our GPU based code we observe an acceleration of a factor of 30–40
compared to a single CPU (Moorkamp et al. 2010a).

For the MT impedance calculation we use the integral equa-
tion code of Avdeev et al. (1997) and parallelize the impedance cal-
culation by frequency. Although this usually means that only 10–20
parallel calculations can be performed, we achieve good scaling of
run time with frequency. An intrinsic parallelization of the forward
code can utilize more processors but is difficult to achieve with good
scaling (Avdeeva 2008) and out of the scope of this project.

Each forward modelling algorithm has different requirements on
the mesh to ensure numerical stability of the solution. All forward
algorithms operate on rectilinear meshes where the model consists
of cuboids of constant parameter value. However, the traveltime
code, for example, requires all cuboids in the mesh to have the same
size in all three dimensions and the error on the calculated traveltime
scales roughly with cell size. The error on synthetic impedances
depends on the ratio of the mesh size to penetration depth, so deeper
parts of the model can be discretized with a coarser grid, as they are
only illuminated by long period data. Also, the calculation time for

the integral equation code depends strongly on the number of cells
in z-direction (depth), therefore it makes sense to use a coarse grid
at depth for the MT forward calculations. Finally, we might want
to regularize the inversion by using large blocks in some areas to
enforce constant parameter values there.

For these reasons, we separate the inversion grid from the forward
modelling grid for each method. We can specify a different grid for
each method and refine the inversion model to match that grid. We
use a simple form of refinement where for the forward calculation
we only can add new cell boundaries to the inversion mesh and
always preserve the existing boundaries of the inversion grid. This
way we do not have to interpolate any parameter values. This type
of refinement is equivalent to resampling the model and we will
denote this operation with III(x).

3.5 Gradient calculation

The inversion algorithms require the gradient of the objective func-
tion with respect to the generalized model parameters. Given all the
steps described above we have for the synthetic traveltime data t =
g (m) in eq. (2)

g(m) = g
{
X[s(m)]

}
. (13)

Therefore the gradient of the objective function has to be calculated
using the chain rule, for example for the seismic objective function
we have

∂�seis

∂m
= ∂s

∂m

∂X
∂s

∂t

∂X
∂�seis

∂t
. (14)

Here ∂t

∂X is the sensitivity matrix for the seismic data with respect

to the refined grid. As this matrix is sparse for the seismic data
we can calculate this matrix separately by backtracking through the
calculated traveltime field (Heincke et al. 2006), while for gravity
and MT data we directly compute the product with the last term
using an adjoint approach (Plessix 2006; Avdeev & Avdeeva 2009).

The term ∂X
∂s describes how the refined grid changes when one

of the parameters on the inversion grid changes. For our simple re-
finement schemes this is just a summation over the gradients in all
cells in the refined grid that correspond to one cell in the inversion
grid. Finally, the term ∂s

∂m relates the changes of the objective func-
tion with respect to the physical parameters to the generalized model
parameters. This term depends on the parameter relationship and
in our case has a simple analytical form. Once we have calculated
the gradient for each type of data and possible regularization and
cross-gradient terms the gradient of the objective function becomes
simply the sum of all gradients

�Joint(m)

∂m
= �Tomo(m)

∂m
+ �MT(m)

∂m
+ �Grav(m)

∂m
+ . . . (15)

We then use this gradient to update the inversion model with one of
the large-scale optimization algorithms NLCG or L-BFGS.

4 S Y N T H E T I C E X A M P L E S

We perform a number of tests on a simple synthetic model to eval-
uate the potential of the joint inversion approach. In particular, we
want to see how our joint inversion performs in comparison with
single inversions and how the two approaches of coupling the data
impact on the joint inversion results. For the comparison between
joint inversion and single inversion we use L-BFGS as an opti-
mization method in all cases. We constrain the slowness between
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Figure 2. A plot of the true model. On the left-hand panel we show a plot of the surface layer that shows the position of the two anomalies. On the right-hand
panel we show a vertical depth slice through the centre of the two anomalies. The position of this vertical slice is marked by a thick line on the horizontal slice.
We show the position of the measurement sites for which we generate synthetic data by circles (seismic receivers and sources), triangles (MT) and squares
(gravity), respectively.

10−4 and 0.005 s m−1, corresponding to velocities of 10 000 and
200 m s−1, respectively.

4.1 A simple example

Our test model (Fig. 2) consists of 20 × 20 × 10 cubic cells with
an edge length of 500 m. Within a layered background the model
contains two rectangular anomalies that extend from the surface
down to a depth of 2000 m. One anomaly has a 20 per cent higher
slowness than the corresponding background layer, while the other
anomaly has a 20 per cent lower slowness.

We construct corresponding density and conductivity models us-
ing the parameter relationships in eqs (10) and (11). From these
three models we calculate synthetic traveltimes, scalar and tensorial
gravity responses and MT impedances. We place 25 seismic sources
and receivers on a regular grid on the surface with a distance of
2 km between each source in both horizontal directions. For all 600
source–receiver combinations we calculate synthetic traveltimes.
For the gravity data the 16 measurement sites are arranged on a
rectangular grid with a distance of 2 km in each direction. At each
site we calculate both scalar gravity data as well as the full gravity
tensor. Finally, we have 16 MT sites with a spacing of 2 km and
calculate the for elements of the MT impedance tensor for four
frequencies between 10 and 0.1 Hz. We add Gaussian noise with a
standard deviation of 20 ms to the synthetic traveltimes and 2 per
cent Gaussian noise to the MT and gravity data. These data with
added noise form the input for all individual and joint inversion
experiments described below. The combination of a small model
with such a small data set enables us to quickly perform various
tests in order to investigate the properties of the two joint inversion
approaches.

Fig. 3 shows the result of a single seismic tomographic inversion.
The starting model is the true layered background without the two
anomalies. We see that the inversion of seismic data alone recovers
the general shape and position of the two anomalies. We overesti-
mate the amplitude of the high slowness anomaly at the surface and
do not fully recover the depth extent of both anomalies. Also, the

transition between the two anomalies is blurred out and towards the
borders of the model we observe some artefacts in the background.
These are both effects of the regularization used in the inversion.
Here we employ a curvature-based smoothness functional. In ad-
dition to equalizing parameter variations it also permits constant
spatial gradients and thus trends in the parameters tend to be ex-
tended into regions without data coverage. However, this property
of permitting linear trends is useful for the inversion of seismic data,
as we have increasing velocity with depth that otherwise would have
to be facilitated by down-weighting the smoothing in the vertical
direction. All in all the result of the single inversion is satisfactory
for this simple model.

The inversion of MT data alone shows the expected result for
this inductive method (Fig. 4). Compared to the seismic tomog-
raphy model the transition between anomalies and background is
more smooth. This obviously also depends on the amount of regular-
ization but it is generally true for all models that do not show strong
oscillations in parameter values that are a sign of underregulariza-
tion. As before we recover the general shape and position of the
anomalies and in the centre the obtained parameters values match
the true model well. Again we loose some resolution at depth, this
is to some degree due to the fact that we only use a single frequency
per decade.

The results of the inversion of the two types of gravity data are
somewhat surprising. As shown in Fig. 5 the inversion recovers the
shape of the two anomalies at the surface very well. We have to re-
member though that for all inversions we start with the true layered
background model and the inversion only has to recover the anoma-
lous parameter values. For different starting models we expect the
individual MT and seismic inversions to perform similarly but the
gravity inversion to differ significantly because of lower resolution.
Also the parameter values are not well estimated in cells without
measurement sites and the good results are restricted to the surface
layer. Already the second layer shows a much weaker signature of
the anomalies before they disappear in the third layer.

For the joint inversion we use the same data with added noise
as for the individual inversions. All data are weighted by their
variance with no additional weighting between the data sets. We
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Figure 3. Tomography only model. We show the result of the tomographic inversion with the same scale as for the true model. For reference we also plot the
position of seismic sources and receivers (circles).

Figure 4. Final model obtained from single MT inversion. For easier comparison we plot the result of the MT inversion in terms of slowness using the true
relationship between the test models.

first present the results with direct parameter coupling. In this case
the parameter relationships in the joint inversion exactly match
the relationships that we use to generate the true models. This is the
ideal situation for the joint inversion, as the different methods are
strongly linked to each other and we can expect some improvement
of the inversion results. For this example we use the same weight
for the regularization term, however due to the additional data the
effective weight of the regularization is slightly lower than for the
individual inversions.

We plot the model resulting joint inversion with direct parameter
coupling in Fig. 6. For the surface layer we can see significant
improvement over the inversion of the individual data sets alone.
The shapes of both anomalies match the shape of the true anomalies
and we also recover the slowness values of the anomalies with
little scatter. In addition, the artefacts at the border of the model
are strongly reduced. The vertical slice through the model shows
that with depth the improvement becomes less pronounced. Below
2000 m depth both inversion results are very similar. We have to

consider though that gravity data has no direct depth resolution and
that the MT data has only one impedance estimate per decade.

Comparing the convergence curves of the seismic tomography
inversion (black) with the joint inversion (red) in Fig. 7 illustrates
the influence of the gravity and MT data. While the χ 2-misfit for the
seismic data at final iterations is virtually identical, the misfit of the
tensor gravity and MT data sets is consistently lower after the first
iteration. It is interesting to see that the misfit for the scalar gravity
data is higher for the initial iterations but then falls below the final
misfit of the seismic tomography inversion. We can also see the
complex interaction between the different types of data as the misfit
for each type of data occasionally increases before it plunges down
again. Although the tomographic inversion also reduces the misfit
of the other data sets, the joint inversion reaches a final misfit that is
a factor 2–100 lower than for the seismic tomography inversion. The
joint inversion stops after 42 iterations as it cannot find a suitable
step size that minimizes the objective function significantly. The
total run time in this case is ≈40 min on a standard Core 2 Q6600
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Figure 5. Final model obtained from gravity only inversion. For easier comparison we plot the result of the gravity inversion in terms of slowness using the
true relationship between the test models.

Figure 6. Final model obtained from joint inversion with direct parameter links.

quad core desktop computer with 4 GB of main memory. Most of
this time is consumed by the MT forward and gradient calculations.

For the joint inversion using the cross-gradient approach we need
to specify the weights for three cross-gradient terms and three reg-
ularization terms, one for each of the physical parameters slow-
ness, density and conductivity. We obtain a separate model for each
parameter, however the cross-gradient terms ensure that there is
structural similarity between these three models. Due to the inter-
action between data misfit objective, cross-gradient objective and
regularization, the value of the weight for the regularization term is
not directly comparable to the weight for the individual inversion.
We therefore scale the covariance for the three regularization terms
so that the misfit for the cross-gradient inversion becomes com-
parable to the joint inversion with direct parameter coupling. This
ensures that the models remain comparable. In this case the values
for the covariance scaling factors are αReg,s = 50, αReg,σ = 50 and
αReg,ρ = 1.

Fig. 8 shows the inversion result for seismic slowness using cross-
gradient coupling. The result looks similar to the direct parameter

coupling although there is some additional scatter at the borders
of the two anomalies. As before we can see some improvement
over the individual inversions for the surface layer, but at depth
all results are relatively similar. The colour scale used to plot the
inversion result is a compromise between representing the whole
range of parameter variations while keeping the anomalies and small
fluctuations visible. To improve the visibility of fluctuations from
the true model we plot the relative difference between the inversion
results and the true model for the surface layer in Fig. 9 and for a
vertical slice across the centre of the model in Fig. 10.

Deviations from the true model are relatively similar for both
types of joint inversion. The maximum relative deviation from the
true model is ±10 per cent. Particularly at the boundaries of the
model we can see larger deviations that are due to reduced data
coverage. We can identify larger deviations from the true model for
the cross-gradient case at the transition between the two anoma-
lies, but throughout the rest of model the inversion results of
both joint inversions fluctuate around the true model with posi-
tive and negative deviations equally distributed. In comparison the
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Figure 7. Convergence curve for the joint inversion compared to the seismic tomography inversion. We show the χ2 misfit at each iteration for each type of
data for the tomographic inversion (black) and joint inversion using direct parameter coupling (red). (a) seismic data, (b) scalar gravity data, (c) tensor gravity
data, (d) MT data and (e) regularization term. We also plot the level that corresponds to an rms of 1 as a dashed line in each plot of data misfit.

Figure 8. Final model obtained from joint inversion with cross-gradient links.

individual seismic inversion shows much larger deviations from the
true model demonstrating the improvement we can obtain with joint
inversion in comparison to the single inversions. This observation
is confirmed by the misfit between the true model and the three
inversion results,

χ 2 =
∑

i

(
s true

i − s inv
i

s true
i

)2

. (16)

Here the summation goes over all model cells and s inv
i and s true

i

denote the slowness in each cell for the inversion result and the
true model respectively. For the tomographic inversion we obtain
χ 2

tomo = 5.3, while for the cross-gradient inversion χ 2
cross = 4.8 and

for the direct coupling joint inversion χ 2
direct = 3.5.

Obviously the joint inversion results depend on the chosen
weighting between the data, the regularization, and, if present, the
cross-gradient functionals. Particularly, for the cross-gradient ap-
proach we need to specify various weights that all impact on the
final model. We therefore investigate the interaction between the
different functionals for this approach further.

Fig. 11 shows how variations in the regularization of the con-
ductivity model change the obtained velocity model with the
cross-gradient approach. Both models are coupled through a cross-
gradient term, so as long as the coupling is strong the smooth-
ness of the MT model will be reflected in the seismic model.
From these plots it appears that any value for αReg,σ between
10 and 100 produces reasonable results. Below αReg,σ = 10 we
start to see erratic behaviour, while for αReg,σ > 100 the resulting
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Figure 9. Relative difference (strue − s)/strue between inversion results and true model for the slownesses. For each inversion we plot the relative difference
for the surface layer.

models look overly smooth. Similarly, the misfit for the seismic data
(not shown) increases with increasing regularization of the conduc-
tivity model. It therefore appears that for our chosen weight for
the cross-gradient term αCross,s/σ = 107 the regularization of con-
ductivities has a direct impact on the seismic data. We will now
see how changing the weight of this term influences the inversion
results.

Again we use the initial cross-gradient result as a basis for our
experiment and vary the values for all three cross-gradient terms that
were κ = αCross,s/ρ = αCross,σ/ρ = αCross,σ/s = 107 above between
105 and 109. Fig. 12 shows a plot along the surface for all three
parameters involved in the joint inversion. We observe that the
results are similar for coupling values between κ = 106 and 108.
The three inversion results obtained with this parameter range all
show a good recovery of the two anomalies with little scattering or
excessive smoothing. The model with a weight of κ = 105 for the
three cross-gradient terms in comparison is visibly smoother, while
for a value of κ = 109 we start to see erratic parameter variations for

slowness, density and conductivity. Interestingly the model with the
largest coupling is not only more erratic but also has a larger misfit
for all data sets compared to the other models. This indicates that for
such high values the inversion is mostly occupied with decreasing
the cross-gradient term at the expense of the data misfit terms and
the regularization. Conversely a lower weight for the cross-gradient
terms allows the regularization to act more strongly as indicated by
the smooth variations of the inversion results.

Finally, we examine how the direct parameter coupling and the
cross-gradient approach behave when conductivity and slowness
do not have exactly the same spatial structure. We now combine
the seismic and gravity data sets used above with synthetic MT
data calculated from the incompatible model shown in Fig. 13.
Here we multiplied the conductivities for the right half of the two
anomalies by a factor of two. Although we only plot the surface
layer we apply this multiplication for the whole depth range of
the anomalies between the surface and 2000 m depth. The site
distribution, frequencies and noise characteristics are exactly as
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Figure 10. Relative difference (strue − s)/strue between inversion results and true model for the slownesses. For each inversion we plot the relative difference
along a vertical slice through the centre of the model.

before for the test with the compatible models and we call this the
incompatible test case.

Fig. 14 shows the joint inversion result using the direct parameter
coupling with exactly the same weights as for the compatible case.
As expected the deviation from the assumed parameter relationship
is mapped into spurious anomalies. These occur not only directly
in the regions where the true models do not match the relationship,
but also in the surrounding regions. The joint inversion is creating
these structures in order to fit all data sets simultaneously. We can
identify the limited reliability of this model through the significantly
increased misfit for both the MT and the FTG data, the first arrival
times and scalar gravity data in contrast are fitted to a similar level
as for the compatible case.

For the cross-gradient inversion of the incompatible data set we
perform a similar experiment as before and vary the weight of the
cross-gradient term to analyse its impact on the results (Fig. 15).
As before a coupling weight of κ = 109 reduces the influence of
the regularization and results in strong fluctuations of the parame-
ter values in all three models. For all other values of κ we obtain
reasonable results. The seismic and gravity anomalies are more or
less continuous as in the true models while we can identify a par-
titioning of the MT model. This effect becomes more pronounced
with reduced coupling as this allows the models to be more differ-
ent from each other. We consider the results for κ = 107 the best
although the results for smaller values are similar. Interestingly, in
theory we should be able to reconstruct the true model regardless
of the weight for the cross-gradient term, as the difference between
the true conductivity model and the other two models is chosen

so that the cross-gradient functional for the true model vanishes.
However, the regularization produces additional gradients with di-
rections depending on data coverage and resolution characteristics
for each data set. This then results in a complex interaction between
the data misfit terms, regularization and cross-gradient terms and
an imperfect fit to the data.

For our preferred cross-gradient model with κ = 107 and the
direct parameter coupling we again plot the relative difference to
the true model for the slowness model (Fig. 16). This plot con-
firms our previous observations: For the direct coupling we obtain
strong deviations from the true model mostly where the param-
eter relationship is violated, but also in the surrounding regions.
For the cross-gradient coupling the deviations are smaller. Also,
the strongest deviations are located at the transition between the
anomalies where the regularization acts strongest and at border of
the inversion domain where we have limited data coverage. This
demonstrates that in cases where there is doubt about the struc-
tural coherence for the different parameters in the joint inversion,
cross-gradient coupling is an adequate approach.

5 C O N C LU S I O N S

We have presented first joint inversion results for a simple test
model and examined the impact of various factors on the inver-
sion results. The flexible structure of the joint inversion framework
allows us to change the model parametrization and number of objec-
tive functions in order to investigate different coupling approaches.
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Figure 11. The impact of MT regularization on slowness in the cross-gradient inversion. We plot the seismic model from the cross-gradient inversion for
different values of the weight for the regularization of the conductivities αReg,σ . This demonstrates how the different physical parameters interact through
cross-gradient coupling.
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Figure 13. The incompatible conductivity model (left-hand side) that we use for the following experiment and for comparison the compatible conductivity
model used above (right-hand side).

Figure 14. The slowness model from joint inversion with direct parameter coupling for the incompatible data set. We can see how the discrepancy between
the different data is mapped into spurious anomalies.

Obviously, the simple geometry of our synthetic test model is not
representative for a possible geological target and the inversion
domain is small for a 3-D geometry. However, this model is well
suited to investigate some of the basic properties of joint inversion.

Our results demonstrate that when a direct parameter relation-
ship exists and is utilized in the joint inversion we obtain the largest
improvement over single inversion results. Still, cross-gradient cou-
pling, which makes only few assumptions about the relationship
between different data sets, results in a considerable improvement.
Cross-gradient coupling should therefore be the preferred approach
when the existence of a direct relationship between the different
physical parameters is doubtful. This conclusion is supported by

the experiments where the conductivity structure does not match
the structure of the other anomalies. In this case the joint inversion
with cross-gradient constraints still produces good results, while the
direct parameter coupling results in a number of spurious artefacts.
In addition, for the inversion of real data it is rarely possible to fully
describe the relationship between different physical parameters by
analytical functions. Disregarding deviations from the assumed re-
lationship in the inversion will then result in inversion artefacts and
underestimating uncertainties for the model parameters. A possible
solution is to include a statistical property relation description in the
inversion (Bosch 2004) that allows for deviations from the assumed
relationship.
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Figure 16. Relative difference (strue − s)/strue between inversion results and true model for the incompatible case and for κ = 107. For each inversion we plot
the relative difference for the surface layer (upper row) and a vertical slice through the centre of the model (lower row).

One difficulty with cross-gradient inversion of three different
physical parameters is the large numbers of weights that need to
be specified. Although our experiments suggest that the exact val-
ues of the weights are not critical, the acceptable range for the MT
regularization was ασ = 10–100 and for the cross-gradient terms
κ = 105–107, we observe a complex interaction between the dif-
ferent terms of the objective function. It is therefore necessary to
perform various joint inversions with different weights. This is, how-
ever, advisable in any case in order to be able to assess the validity
of the joint inversion results. For the compatible test case there was
little variation of the anomalies with cross-gradient weight. In all
cases there were two continuous anomalies and only the transition
to the background changed. For the incompatible case we see how
with increasing weight for the cross-gradient term the conductivity
anomalies that were split before start to join, an indication of the
incompatibility. Furthermore the misfit that we can achieve with the
joint inversion compared to single inversion is another important
indicator of compatibility.
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