
STRUCTURE‐COUPLED MULTIPHYSICS
IMAGING IN GEOPHYSICAL SCIENCES

Luis A. Gallardo1 and Max A. Meju2,3

Received 3 March 2010; revised 1 December 2010; accepted 18 January 2011; published 3 March 2011.

[1] Multiphysics imaging or data inversion is of growing
importance in many branches of science and engineering.
In geophysical sciences, there is a need for combining
information from multiple images acquired using different
imaging devices and/or modalities because of the potential
for accurate predictions. The major challenges are how to
combine disparate data from unrelated physical phenomena,
taking into account the different spatial scales of the measure-

ment devices, model complexities, and how to quantify the
associated uncertainties. This review paper summarizes the
role played by the structural gradients‐based approach for
coupling fundamentally different physical fields in (mainly)
geophysical inversion, develops further understanding of this
approach to guide newcomers to the field, and defines the
main challenges and directions for future research that may
be useful in other fields of science and engineering.

Citation: Gallardo, L. A., and M. A. Meju (2011), Structure‐coupled multiphysics imaging in geophysical sciences, Rev.
Geophys., 49, RG1003, doi:10.1029/2010RG000330.

1. INTRODUCTION

[2] Direct and indirect measurements of different prop-
erties of physical systems such as the Earth and human body
are often made at different spatial and temporal scales. Such
multidimensional, multispectral and often incomplete hetero-
geneous data sets are used to infer the structure and physical
state of the system under investigation. In many cases,
detecting and monitoring the presence or movement of fluids
within such systems from multimodal signal sensing and
imaging are a primary objective for several reasons, and
require accurate knowledge of the structure holding or con-
fining the fluids. In the Earth sciences for instance, accurate
characterization of material heterogeneity and its influence on
fluid flow or storage in subterranean reservoirs is of crucial
importance in a wide range of contemporary issues including
the use of groundwater resources, volcano and earthquake
monitoring, methane storage in wetlands, carbon dioxide
sequestration and efficient extraction of fossil fuels and landfill
methane [e.g., Beckwith and Baird, 2001; Hertrich and
Yaramanci, 2002; Binley et al., 2002; Gedney et al., 2004;
Roecker et al., 2004; Comas et al., 2005; Chen et al., 2006;
Alpak et al., 2004, 2008; Bedrosian et al., 2007]. (A glossary
of some common geophysical terms is included and their first
appearance is in italics). Interactions between fluid and solid

mineral components of subterranean reservoirs can generate
or allow the transmission of electrochemical, electromagnetic
and mechanical signals that can be measured using geophysi-
cal methods and inverted to image the subsurface physical
property distribution [e.g., Berge et al., 2000;Hubbard et al.,
2006]. However, while imaging methods based on electrical
[Sasaki, 2004; Günther et al., 2006], electromagnetic [e.g.,
Rodi and Mackie, 2001; Sasaki and Meju, 2006a, 2006b;
Commer and Newman, 2008], nuclear magnetic resonance
[Hertrich and Yaramanci, 2002] and sound wave or seismic
[Bergman et al., 2004;Hole et al., 2005] phenomena are well
established in geophysical studies of fluid reservoirs, there
are still limitations in the way that the data from multidi-
mensional imaging surveys are interpreted, and a unique non-
invasive definition of reservoir structure and presence of fluids
has so far remained a difficult and uncertain proposition.
[3] In medical imaging among others, combining infor-

mation from multiple images acquired using different patient
scanning devices and/or modalities and at different times,
the so‐called image fusion, is a major challenge [Haber and
Modersitzki, 2007; Dullin et al., 2009 and references therein].
Multimodal image registration combines the strengths of
different imaging modalities by aligning images from dif-
ferent sources for fusion, but there are still difficulties in
medical image processing as enumerated elsewhere [Haber
and Modersitzki, 2007; Handels et al., 2007].
[4] The major difficulty has been how to combine the

disparate data from unrelated physical or physiochemical
phenomena and taking into account the different spatial
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scales (or footprints) of the numerous available methods
of remote sensing, scanning or depth sounding (see, e.g.,
Figure 1). This challenge is compounded further by the lack
of established procedures for characterization and propaga-
tion of uncertainties in the measured data and model pre-
dictions, and our often limited or incomplete knowledge
of the physical system being imaged. The measured data are
typically of limited bandwidth and may be corrupted by
ambient noise, and are at best described as inaccurate,
insufficient and inconsistent [Jackson, 1972] for a unique
characterization of the physical system. The natural physical
systems are complex and our physics‐based models
describing them are only as good as the limited information
available about the natural world. Thus, in essence, there is
unavoidable discrepancy between physics‐based predic-
tions of the system response and the realities they purport
to represent. So, how can we overcome these difficulties
and generate more realistic images of a physical system?
Multiphysics‐based imaging and uncertainty analysis have
the potential to provide an answer to this question as is long
known in geophysical imaging [Vozoff and Jupp, 1975] but
the emphasis in multidimensional analysis has been on
modeling measurements from physically related phenomena,
for which there are empirically observed or analytically
established relationships [e.g., Lines et al., 1988; Sasaki,
1989; Lees and VanDecar, 1991; Oldenburg et al., 1997;
Paasche and Tronicke, 2007]. Combining data sets from
uncorrelated physical processes is more challenging and this
has prompted vigorous research in process coupling, uncer-
tainty quantification, and interpretation of resultant models
in terms of the attendant physical processes.
[5] The purpose of this review is to summarize the role

played by the structural gradients‐based approach for cou-
pling fundamentally different physical fields in (mainly)
geophysical inversion (section 2), develop further under-
standing of this approach to guide newcomers to the field of
multiphysics inversion (sections 3 and 4), and define the main
challenges for future research (section 5). Although we draw

mostly from the geophysical literature, we develop the nec-
essary background material in tutorial form in section 3 and
provide a glossary of geophysical terms to make this paper
accessible to workers in different fields in which physics‐
based process simulation (forward modeling) apply. In
section 3, we explore some metrics for quantification of
uncertainty in gradient‐based image reconstruction or inte-
gration of multiphysics information. Given the large‐scale
needs of the geosciences community, we also draw attention
to variance‐covariance estimation byMonte Carlo integration
as an attractive approach to uncertainty quantification [e.g.,
Alkhatib and Schuh, 2007]. In section 4, we demonstrate an
emerging joint inversion approach that combines multi-
physics and geological information derived principally
from boreholes so as to improve images of subsurface
structures [Gallardo, 2007b; Cardiff and Kitanidis, 2009;
Lelièvre and Oldenburg, 2009]. This approach is significant
because the ultimate challenge of incorporating borehole
constraints in appropriately coupled three‐dimensional (3‐D)
imaging of spatial and temporal field measurements which
respond to electrical, chemical and mechanical excitations
of a physical system such as the Earth will permit a realistic
characterization of its structural heterogeneity and the possi-
ble influence on fluid transport. Interestingly, the physics
of fluid flow and electromagnetic induction or sound propa-
gation phenomena in porous media can be coupled through
fluid saturation equations [Pride, 1994; Alpak et al., 2008].
Consequently, we explore new directions in the use of a fluid
transport model to link geophysical inversion results to the
microscopic properties of rocks which control subterranean
fluid flow [Cassiani and Binley, 2005; Linde et al., 2006;
Alpak et al., 2008; Looms et al., 2008], and discuss the out-
standing challenges and suggest directions for future research
in multiphysics imaging in section 5.

2. WHAT IS STRUCTURE‐COUPLED JOINT
INVERSION?

2.1. Structural Coupling of Multiphysics Inverse
Problems
[6] Apart from some well‐known process couplings such

as the effect of temperature and fluid saturation on electro-
magnetic and sound wave propagation in porous media
[del Río and Whitaker, 2001; Pride, 1994], the couplings
between the physical theories used to predict the outcomes
of many multiphysics experiments on a natural physical
system may be largely uncertain, and their stability and
convergence properties unknown. There are thus significant
challenges in any combined analysis of these possibly com-
plex nonlinear and time‐dependent phenomena. Consequently,
experimental data from coincidentally located seismic and
electrical or electromagnetic multidimensional scanning of
the Earth (Figure 1) are commonly inverted separately since
there is no established analytical relationship between these
depth‐scanning methods. Separate data inversion leads to
inconsistent models for the same subsurface target under
observation. Moreover, individual physical phenomena such
as sensed in geophysical experiments are subject to attenua-

Figure 1. Illustration of the concept of multiphysics or
multimodal remote sensing measurements. An array of
sources and detectors are deployed within, above, or on the
surface of a physical system. The detectors or sensors register
data related to the object’s response to physical excitations of
the system by the different applied sources.
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tive and dispersive processes which along with our limited
knowledge of the physical system, limit the resolution capa-
bilities of the typically band‐limited experimental data.
However, just as rock porosity and the presence and amount
of fluids can influence the electrical and mechanical proper-
ties of porous media [Pride, 1994], the structural attributes of
the media can influence the interactions between these
properties and any applied electrical, electromagnetic and
mechanical excitations. In geophysical imaging, the rock
structure or boundaries may remain common to the multi-
physics scanningmethods (i.e., a common frame of reference)
and thus serve for multiple property coupling and integration,
which can help reduce themodel uncertainty inherent in using
the individual methods. This is the basis of structure‐coupled
joint inversion. Structural coupling requires the imposition of
physically or mathematically driven matching conditions
at structural boundaries in a numerically stable way. An
appropriate measure of data misfit is minimized subject to the
conditions of structural similarity enforced on the sought
physical models (Figure 2). Simultaneous multidimensional
inverse modeling or “joint inversion” of multiphysics data
with structural constraints (Figure 2) has been shown to lead
tomodels that are in better accord and closer to the true system
property distribution [Haber and Oldenburg, 1997; Zhang
and Morgan, 1997; Berge et al., 2000; Ditmar, 2002; Musil
et al., 2003; Gallardo and Meju, 2003, 2004, 2007; Meju,
2005; Chen et al., 2006; Linde et al., 2006, 2008;
Bedrosian, 2007; Bedrosian et al., 2007; Gallardo 2007a;
Hu et al., 2007; Infante et al., 2010]. However, not all

physical property distributions in the subsurface will be
structurally coincident and some flexibility in model recon-
struction may be necessary in some geological environments.
[7] We distinguish between structure‐coupled joint inver-

sion of multiphysics data [e.g.,Gallardo andMeju, 2003] and
the alternative approach of traditional cooperative inversion
[Lines et al., 1988; Oldenburg et al., 1997; Paasche and
Tronicke, 2007] or structural cooperative inversion [e.g.,
Lelièvre, 2009; Jegen et al., 2009]. In the iterative cooper-
ative inversion of data from two geophysical methods, the
respective data sets are inverted in separated steps but the
resulting model (i.e., structure and physical property distri-
bution) of one iteration step is used as the starting model for
the other step through an assumed relation between the two
methods. Some (compositional) correlation between the
physical properties is assumed in the traditional cooperative
inversion approach while it is assumed that the structural
aspects of the physical property fields are spatially corre-
lated in structural cooperative inversion. This approach may
not lead to a unique solution but allows for the possibility
that not all geophysical attributes are structurally coupled. It
is possible to constrain the cooperative solution process to
honor a priori structural information about the physical
system but our knowledge of the system is often incomplete
and may be inconsistent with the experimental data. There
is thus a need for an approach to resolve or avoid such
potential conflicts with measured data. It is emerging that
appropriately coupled simultaneous inversion of multiphysics
data with a priori information (Figure 2) might provide a

Figure 2. Flowchart of a basic structure‐coupled multiphysics imaging of an Earth system using geo-
physical measurements. A quadratic measure is minimized under the imposed condition of structural sim-
ilarity, enforced on the unknown models for the different physical property fields (resistivity, velocity,
density). The matrix D and the weighting factor a serve for the regularization of the problem while
the available prior knowledge of the system parameters is contained in m0.
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panacea for such problems [Gallardo, 2007b; Cardiff and
Kitanidis, 2009; Lelièvre and Oldenburg, 2009].

2.2. Quantifying Uncertainty in Multiphysics Joint
Inversion
[8] Although coupled multiphysics imaging can lead to

realistic models of a physical system, an essential element in
decision making with such models is an understanding of
the range of possible solutions permitted by the inverted
band‐limited heterogeneous data. Accurate characterization
of model uncertainty is critical for evaluating risk in high‐
stake operations like oil field prospect evaluation and
development where it drives business decisions such as the
well placement and well count. From an imaging point of
view, the key sources of uncertainty are data inaccuracy and
limited bandwidth, incomplete knowledge and information
about the typically complex physical system under investi-
gation, and predictive modeling (theoretical and discretiza-
tion) errors. These sources of uncertainty have been treated
using either deterministic or probabilistic approaches [see,
e.g., DeVolder et al., 2002; Reagan et al., 2003; Caers et al.,
2006; Chappell and Lancaster, 2007; Vasco, 2007; Cardiff
and Kitanidis, 2009; Meju, 2009 and references therein]. A
particularly difficult challenge is error estimation in the
solution of partial differential equations that constitute our
numerical representation of the physical system being
investigated [e.g., DeVolder et al., 2002; Reagan et al.,
2003]. In the presence of limited information about a com-
plex physical system, uncertainty may arise in the selection of
the relevant physics and associated models, approximations
in the experiments used for validating these process simula-
tion models, and the computationally achievable model
resolutions with the available machines. However, its quan-
tification has emerged over the past decade as a body of
knowledge that can permit meaningful model‐based predic-
tions of physicochemical phenomena [e.g., Reagan et al.,
2003]. Unfortunately, metrics for validating predictions of
physical reality and mathematical constructs that are useful
for describing uncertainties in multidimensional multiphysics
imaging are lacking, making practical interpretation of model
predictability and uncertainty in data inversion a difficult
proposition. Many approaches have been proposed to quan-
tify this uncertainty in multidimensional inverse modeling.
The deterministic approaches include linear sensitivity anal-
ysis [e.g., Alumbaugh and Newman, 2000; Kalscheuer and
Pedersen, 2007; Kalscheuer et al., 2010] and construction
of extremal solutions [e.g., Vasco, 2007; Meju, 2009]. The
probabilistic approaches include density function estimation
[Snieder, 2004; Caers et al., 2006; Cardiff and Kitanidis,
2009] and covariance estimation by Monte Carlo integra-
tion [e.g., Alkhatib and Schuh, 2007]. The key question here
is, can we realistically quantify uncertainty in large‐scale
applications of structure‐coupled multiphysics imaging?

2.3. Post Inversion Classification and Interpretation
of System Parameters
[9] In spite of the recent developments in structure‐

coupled joint inversion, the idea of unique determination of

structural and compositional trends of a physical system
such as the Earth’s crust from joint inverse modeling still
faces conceptual and technical challenges. As result, the
classification of structure and lithology (or lithofacies) based
on multiphysics imaging has received the attention of
several workers [Bosch, 1999; Bosch et al., 2002; Gallardo
and Meju, 2003, 2007; Günther and Bentley, 2006; Paasche
et al., 2006; Bedrosian et al., 2007; Paasche and Tronicke,
2007; Linde et al., 2008; Infante et al., 2010]. Gallardo and
Meju [2003] introduced a simple concept of using the
result of joint inversion for structural and lithological clas-
sification. For an imaging problem involving two or more
physical fields such as electrical resistivity and sound wave
velocity, they perform pixel‐by‐pixel search for correlated
patterns in the jointly reconstructed images. The various
trends were then used to infer geological associations such
as distinct lithological units within each common structural
entity in the reconstructed model of the subsurface. This
concept was investigated by other workers with variable
conclusions [Linde et al., 2006, 2008; Günther and Bentley,
2006; Paasche et al., 2006; Bedrosian et al., 2007; Gallardo
and Meju, 2007; Paasche and Tronicke, 2007; Infante et al.,
2010]. The issue of contention is how the zones of similar
physical property trends are selected and classified. Some
workers suggest that the identified patterns may be an arti-
fact of the regularization used in solving the joint inverse
problem and/or bias on the part of the interpreter [Bedrosian
et al., 2007]. Günther and Bentley [2006] employed cluster
analysis for trend selection in their structure‐coupled joint
electrical resistivity and seismic velocity models. Gallardo
and Meju [2007] investigated the effect of different prob-
lem regularizations on 2‐D structure‐coupled joint inversion
of synthetic and field data. They showed that there are well
defined trends in the reconstructed models which may
permit structural and lithological classification.
[10] Linde et al. [2006] constructed 3‐D joint inversion

models from cross‐hole electrical resistivity and georadar
travel time measurements and used the results, validated
against borehole data, to investigate the lithological classi-
fication problem. Joint inversion made it possible for them
to estimate probability density functions of subsurface for-
mation factor, the water content, and the effective grain
radius of the sediments in the different zones identified using
the classification concept ofGallardo andMeju [2003]. Their
estimates were consistent with gamma ray logs, measured
clay fractions, and electrical formation factors in a cored
borehole. Is realistic structural and lithological classification
possible without sufficient knowledge and information about
physical reality? Linde et al. [2008] applied a structure‐
coupled joint inversion method to a well‐instrumented con-
trol site where the geology consists of saturated unconsoli-
dated sediments with 3‐D heterogeneity. They found that the
highest correlation between inferences from joint inversion
and comparative flowmeter measurements in boreholes were
obtainedwhen a priori information (in the form of a stochastic
regularization operator) was incorporated in the problem
formulation. Infante et al. [2010] conducted coincidentally
located electrical resistivity and seismic travel time mea-
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surements along two profiles at a controlled site where geo-
technical data were available from boreholes for valida-
tion. The available data on sediment types, thicknesses and
moisture content were determined independently using
standard geotechnical methods. The result of 2‐D structure‐
coupled joint inversion for resistivity and seismic velocity
correlated remarkably well with the geotechnical informa-
tion along both measurement profiles, thus establishing that
structural and lithological (including water content) classi-
fication is possible with well‐implemented joint inversion.
However, the accuracy of any joint inversion approach can
be improved by incorporating reliable extraneous informa-
tion about the physical system being investigated. The key
question here is, how can we fully integrate hard and soft
information about physical reality in joint inversion? In what
follows, we will suggest how the questions highlighted
above may be addressed. First, we provide a tutorial that
serves as the starting point for newcomers to the field of
structural joint inversion.

3. SOLUTION OF MULTIPHYSICS INVERSE
PROBLEMS BASED ON COMMON STRUCTURE

3.1. Preliminaries: Gradient‐Based Measures of Image
Similarity

3.1.1. Direction‐Dependent Measures
[11] The similarities or differences in the gradients direc-

tion of any two images can be measured using a variety of
multidimensional operators. A simple comparison of prop-
erly normalized directions is given by measures such as the
normalized gauss map function [Droske and Rumpf, 2004]

n̂ ¼ rm

rmk k ; ð1Þ

where rm is the gradient of an image. This function (1)
describes the precise direction vector of the physical
property fields (see Figure 3) but for normalized gradients,
singularities can occur when ||rm|| → 0 such as in homog-
enous media, local maxima‐minima and saddle points.

[12] The simple difference between two appropriately nor-
malized image gradients

D~� ¼ n̂ 1ð Þ � n̂ 2ð Þ; ð2Þ

provides a linear comparison of the structural resemblance
of two images and has significant computational advantages.
Droske and Rumpf [2004] show successful applications of
this approach to medical image registration where careful
attention was given to the singularity arising from (1) by a
supervised selection of remarkable features with large
property gradients for the application of (2).
[13] Another approach employs either angular or trigo-

nometric functions as gradient measures. Droske and Rumpf
[2004] discuss product‐related functions based on normal-
ized gauss maps and propose functions such as

D� ¼ n̂ 1ð Þ � n̂ 2ð Þ ð3Þ

and

D~� ¼ n̂ 1ð Þ � n̂ 2ð Þ n̂ 1ð Þ � n̂ 2ð Þ
� �

: ð4Þ

The biggest drawback of these functions is the combination of
the singularities associated with both normalized image gra-
dients. Similarly, Gallardo and Meju [2004] propose the use
of angles and vector products based on gradients and suggest
functions such as

� x; y; zð Þ ¼ cos�1 n̂ 1ð Þ � n̂ 2ð Þ
� �

ð5Þ

and

D� ¼ 1

1� n̂ 1ð Þ � n̂ 2ð Þ : ð6Þ

However, these not only face the problem of combined
singularities of two gauss map functions but also the
additional nonlinearity of the trigonometric functions and
their periodicity‐related discontinuity.
[14] Alternative unnormalized functions based on vector

products have been proposed. Remarkably, the cross‐gradient
function [Gallardo and Meju, 2003] defined as

~� ¼ rm 1ð Þ � rm 2ð Þ; ð7Þ

has proven useful and stable, and its application has steadily
grown in joint multiphysics inverse problems [Fregoso and
Gallardo, 2009; Gallardo and Meju, 2003, 2004; Gallardo
et al., 2005; Gallardo, 2007a; Gallardo and Meju, 2007; Hu
et al., 2009; Infante et al., 2010; Linde et al., 2006, 2008;
Tryggvason and Linde, 2006]. The multiplicative character
of this function does not demand additional normalizations/
equalizations or angular transformations. It shows no dis-
continuities or singularities and can detect differences within
large or small gradients. Figure 4 shows a three‐dimensional
map of this function for two 3‐D objects (ellipsoidal and
spherical shells)with rotation geometry [Fregoso andGallardo,
2009]. The direction of the cross‐gradient vector is consis-
tent with the circular geometry of the objects whereas the

Figure 3. Gradient fields of two geometrical volumes
(ellipsoidal and spherical shells). Note that differences in
the shapes are observed in the direction of the gradient vec-
tors, whereas the gradient magnitudes are arbitrarily set as
constant [after Fregoso, 2010].
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magnitude of the vector emphasizes the morphological dif-
ferences due to conflicting gradients. Note that common
structures are picked up when the magnitudes of the three
components of the cross‐gradient vector are zero. Also, the
specific components of the cross‐gradient vectors that are
equal to zero show the structural similarity in a consistent
geometrical direction. For instance, the radial geometry in
Figure 4 reduces two components (radial and x direction) of
the cross‐gradient vector to zero, whereas a two‐dimensional
geometry reduces the vector to just its transverse component
[see Gallardo et al., 2005, Figure 1]. In the general three‐
dimensional (3‐D) objects, if a coordinate basis can align
parallel to the equivalent (equipotential) geometrical con-
tours, it will reduce the need for the whole cross‐gradient
vector to that of just one component, which is computation-
ally advantageous. Unfortunately, the determination of this
particular axis in images of multidimensional objects is a
complex task.
3.1.2. Direction‐Independent Measures
[15] A different approach to measuring structural resem-

blance uses the magnitude of the gradient fields and ignores
the directional characteristic of the property changes [e.g.,
Cumani, 1991; Toivanen et al., 2003]. When this strategy is
applied to pattern recognition tasks such as edge detection,
the gradients that are regarded as large are simply selected as
the most appropriate to define the edges of the objects. This
is measured by a threshold value which can be statistically
regulated so as to guarantee that the amplitude of the change
surpasses the noise level in the image. For geophysical imaging
involving two different data sets,Haber andOldenburg [1997]
and Zhang and Morgan [1997] propose the use of model
curvature as a measure of structure. Haber and Oldenburg
[1997] employ the function

� ¼
0 r2m

�� �� < �1
P5 r2m

�� ��� �
�1 < r2m

�� �� < �2
1 �2 < r2m

�� ��;
8<
: ð8Þ

while Zhang and Morgan [1997] use a function of the form

� ¼ r2m
�� ��

�2
; ð9Þ

as a structure operator. In equations (8) and (9), P5 is a
one‐dimensional polynomial of degree 5 which makes the
structure operator twice Frechet differentiable, t1 and t2
define the interval within which this operator is twice dif-
ferentiable, and a is an amplitude normalization factor.
These functions principally detect the edges of objects in
images and the structural differences between the two images
is given by

D� ¼ � 1ð Þ � � 2ð Þ: ð10Þ

A key feature of this approach is that it assumes that the
coincident occurrence of sharp edges or prescribed smoothed
edges is the main indicator of morphological resemblance
and penalizes other variations such as ramp‐ or fuzzy‐type
boundaries. The presumed advantage is that D� is a linear
operator and this facilitates its computation. However, it
requires a model‐dependent normalization (which actually
suggests its nonlinear nature) and ignores direction‐dependent
morphological information that defines an object’s shape.

3.2. Joint Inversion Based on Gradient Direction
of Resemblance
[16] There are two different philosophies on structure‐

coupled joint inversion. One school of thought seeks exact
structural resemblance between the sought images. In the other
school of thought, structural resemblance is encouraged,
rather than imposed, by minimizing a weighted norm of
the structural resemblance constraint. The advantages and
drawbacks of each approach are discussed below.
3.2.1. Inversion for Exact Structural Resemblance
[17] Gallardo and Meju [2003] use the cross‐gradient

function (7) in multiphysics imaging and consider two
geophysical images, electrical resistivity (m(1)) and seismic
velocity (m(2)), of the same object to be structurally similar
when

D~�i ¼ ~�i ¼ rm 1ð Þ xi; yi; zið Þ � rm 2ð Þ xi; yi; zið Þ ¼~0: ð11Þ

The inverse problem is posed as the search for those
structurally similar images, as gauged by equation (11),

Figure 4. Comparison of (a) ellipsoidal and (b) spherical images to determine their 3‐D structural resem-
blance. (c) A perspective view of four selected vertical slices that show the cross‐gradient vectors for
these models. Note the (d) circular y‐z behavior of the cross‐gradients and the partial 2‐D resemblance
indicated by the null x component of all cross‐gradient vectors [after Fregoso and Gallardo, 2009].
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which satisfy the measured electrical resistivity and seismic
travel time data. The data are assumed to contain random
noise whose distribution is Gaussian with zero mean and
variance s2. Some knowledge of the data covariance matrix
Cdd is assumed in terms of the data variances, i.e., Cdd =
s2I. They regularize the problem using smoothness as-
sumptions, and also require the images to honor any avail-
able a priori information (m0) about the sought objects. The
errors in the a priori parameter estimates m0 are assumed to
have a Gaussian distribution with covariance matrix Cm0m0

and they minimize the objective function

sð_
m

1ð Þ
;

_
m

2ð ÞÞ ¼ d 1ð Þ
0 � f 1ð Þð_

m
1ð ÞÞ

d 2ð Þ
0 � f 2ð Þð_

m
2ð ÞÞ

�����
�����
2

C�1
dd

þ � 1ð ÞD _
m

1ð Þ

� 2ð ÞD _
m

2ð Þ

�����
�����
2

þ
_
m

1ð Þ � m 1ð Þ
0

_
m

2ð Þ � m 2ð Þ
0

�����
�����
2

C�1
m0m0

; ð12Þ

subject to {�
*
i} = {0

*

} in the discretized model volume. In
this expression D is a discrete version of a second‐order
Tikhonov regularization matrix and is weighted by a con-
stant damping parameter a(i) for each model. Note that this
essentially biased estimation approach is closely related to
the concept of Bayesian inversion [see Meju, 1994, 2009].
Since f (1), f (2) and ~� are nonlinear functions, the solution to
the objective function (12) is accomplished by linearizing
about a starting model and the minimization proceeds iter-
atively. The solution at iteration k + 1 can be expressed as
[Gallardo and Meju, 2003]

m̂ jð Þ
kþ1 ¼ m̂ jð Þ

k þ N jð Þ�1

k n jð Þ
k � B jð ÞT

k qk
� �

j ¼ 1; 2: ð13Þ

Where

N jð Þ
k ¼ A jð ÞT

k C jð Þ�1

dd A jð Þ
k þ � jð ÞDTDþ C jð Þ

m0m0

� ��1
; ð14Þ

n jð Þ
k ¼ A jð ÞT

k C jð Þ�1

dd d jð Þ
0 � f jð Þ m̂ jð Þ

k

� �� �
� � jð ÞDTDm̂ jð Þ

k

þ C jð Þ
m0m0

� ��1
m jð Þ

0 � m̂ jð Þ
k

� �
; ð15Þ

qk ¼ B 1ð Þ
k N 1ð Þ�1

k B 1ð ÞT
k þ B 2ð Þ

k N 2ð Þ�1

k B 2ð ÞT
k

n o�1

� B 1ð Þ
k N 1ð Þ�1

k n 1ð Þ
k þ B 2ð Þ

k N 2ð Þ�1

k n 2ð Þ
k þD�ð_

m
1ð Þ
k ;

_
m

2ð Þ
k Þ

n o
;

ð16Þ

Ak = @f mð Þ
@mk

are the partial derivatives at the point m = m̂k,
and Bk is the Jacobian matrix associated with the cross‐gra-
dient function. The structural dissimilarityD� in equation (16)
is measured by the cross‐gradient function

� m 1ð Þ;m 2ð Þ
� �

¼ rm 1ð Þ � rm 2ð Þ; ð17Þ

and the partial derivatives of the cross‐gradient function are
given by a discrete version of the operator

@�

@m jð Þ ¼ �2;jrm 1ð Þ � �1;jrm 2ð Þ
� �

�r �ð Þ: ð18Þ

Using this derivative, a Taylor series expansion about
_
mk

(1)

and
_
mk

(2) yields

rm 1ð Þ � rm 2ð Þ ffi rm 1ð Þ � rm 2ð Þ
k þrm 1ð Þ

k �rm 2ð Þ � rm 1ð Þ
k

�rm 2ð Þ
k : ð19Þ

Therefore,

� m 1ð Þ;m 2ð Þ
� �

ffi � m 1ð Þ;m 2ð Þ
k

� �
þ � m 1ð Þ

k ;m 2ð Þ
� �

� � m 1ð Þ
k ;m 2ð Þ

k

� �
:

ð20Þ

This equation (20) can be understood as suggesting that in
equations (13) to (16), the linearized cross‐gradient con-
straint considers the structural dissimilarities of the previous
models t(mk

(1), mk
(2)) when updating both models m(1) and

m(2). Following equation (20), it is easy to demonstrate that
while the joint inversion algorithm converges, this linearized
function will converge toward the exact cross‐gradient
constraint required to fully enforce the sought structural
resemblance.
[18] Note that for 3‐D inverse problems, the formulation

given by equation (12) leads to an overconstrained problem
since it results in three equality constraints on two properties
per image cell. In this case, the direct solution of equation
(16) leads to numerical inaccuracies and singularity. The
constraint Jacobian, Bk, must have full row rank, otherwise
the null‐space of Bk or its transpose could be activated
leading to numerical instabilities in iterative inversion. An
effective strategy for solving this problem in the exact
approach involves the removal of redundant constraints from
Bk based on geometrical simplifications (such as two‐
dimensional formulation) or using the singular value decom-
position (SVD) or other factorizations [see Nocedal and
Wright, 1999]. Fregoso and Gallardo [2009] and Fregoso
[2010] solved this problem in their full 3‐D formulation by
reducing the row rank of Bk using the SVD method.
[19] Can any number of physical property fields be

combined using this exact resemblance approach and what
are its limitations? For the general case of multiple image
representations where we have at least k‐types of experi-
mental measurements of k different properties of the same
object, Gallardo [2007a] generalized the method to handle
k property fields. In the illustrative two‐dimensional joint
inversion of four different property fields, each method
benefited structurally from the contribution from the other
methods [see Gallardo, 2007a, Figure 3]. Note that there
are some drawbacks in the exact structural approach. The
algorithm relies on the measure of structural resemblance
for an accurate reconstruction of the shape of the sought
object. There is also the possibility of solution equivalency
since the information provided by the resemblance measure
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can lead to multiple suitable structural models. However,
a good algorithm for enforcing similar structure should be
able to find the most acceptable solution from among all
the structurally equivalent data consistent images of the
sought object.
3.2.2. Inversion With Inexact Structural Resemblance
Measures
[20] A second school of thought adopts inexact measures

of structural resemblance but have the added flexibility that
such measures may be treated as statistical realizations, and
the solution of the inverse problem can be tailored to meet
specific requirements for large‐scale systems. Tryggvason
and Linde [2006], Linde et al. [2006, 2008], and Hu et al.
[2009] adopt this philosophy and form objective functions
that include the cross‐gradient constraint. It is instructive to
show the connection to the exact approach before exploring
the various approaches adopted by these workers. If the
structural resemblance measure in equation (12) is assumed
to be inaccurate and hence assigned an a priori value (D�o)
with associated covariance matrix C��, then one can state
the joint multiphysics inverse problem for the inexact case
as (compare equation (12))

s
_
m

1ð Þ
;

_
m

2ð Þ� �
¼ d 1ð Þ

0 � f 1ð Þð_
m

1ð ÞÞ
d 2ð Þ
0 � f 2ð Þð_

m
2ð ÞÞ

�����
�����
2

C�1
dd

þ D�ð_
m

1ð Þ
;

_
m

2ð ÞÞ�D�0

��� ���2
C�1

��

þ
_
m

1ð Þ � m 1ð Þ
0

_
m

2ð Þ � m 2ð Þ
0

�����
�����
2

C�1
m0m0

: ð21Þ

An explicit solution to this equation is given in iterative
form by

m̂ jð Þ
kþ1 ¼ m̂ jð Þ

k þH�1
k r jð Þ

k j ¼ 1; 2; ð22Þ

where

and

r jð Þ
k ¼ A jð ÞT

k C jð Þ�1

dd d jð Þ
0 � f jð Þ m̂ jð Þ

k

� �� �
þ B jð ÞT

k C�1
��

� D�0 �D�
_
m

1ð Þ
k ;

_
m

2ð Þ
k

� �� �
þ C jð Þ

m0m0

� ��1

� m jð Þ
0 �m jð Þ

k

� �
: ð24Þ

Here, the derivation of the Hessian matrix Hk is based
upon the Gauss‐Newton inversion iteration. In this solution
approach, the structural coupling terms are included in the
off‐diagonal elements of the Hessian matrix Hk (which is
required to be full rank). Any redundancy or incompati-
bility in the structural measure is regarded as evidence of the
inaccuracy of the function and should ideally be accounted for
in the associated covariance matrix C��. Conceptually, this
objective function is identical to that given by equation (12)
when C��

−1 = aI and a → ∞, and the term on the right‐
hand side containing the observables f(m) are augmented
with the regularization terms (Dm) as in (12). However,
computational differences can make equation (22) more
suitable to inverse problems with special requirements. For
example, in large‐scale 3‐D multiphysics imaging pro-
blems, it may be desirable to use the nonlinear conjugate
gradients method in the minimization process. This method
is linear convergent and relies on gradient information on
the objective function and not its Hessian. Therefore, it can
be readily applied to equation (22) but not to either
equation (14) or (23).
[21] Tryggvason and Linde [2006] minimize a quadratic

objective function that determines model perturbations from
a background model, and the minimization of the cross‐
gradient constraint seeks to encourage structural resem-
blance within the model perturbations rather than the actual
physical property fields (seismic compressional‐wave veloc-
ity, Vp and shear wave velocity, Vs). Their objective function
is similar to equation (21) but formulated in terms of model

perturbations for Vp and Vs
�
Dm =

DmP

DmS

� 	�
. After line-

arization of the travel time equation, their resulting system of
equations to solve is

A
�D
�B

2
4

3
5 Dm½ � ¼

Dd
0
���

2
4

3
5; ð25Þ

where Dd and A are the travel times and their partial deri-
vatives with respect to the slowness (reciprocal of velocity)
parameters. D is a Laplacian operator used to control the

roughness of the slowness perturbation field and a is the
regularization parameter.B is the matrix of partial derivatives
of the cross‐gradient function (t) with respect to the model
parameters and l is a constant weighting factor chosen heu-
ristically. The system of equations is solved in a least squares
sense using a nonlinear conjugate gradient method. This is an
attractive approach for large‐scale multiphysics inverse pro-
blems. Linde et al. [2006, 2008] adopt a similar approach

Hk ¼
A 1ð ÞT

k C 1ð Þ�1

dd A 1ð Þ
k þ B 1ð ÞT

k C�1
��B

1ð Þ
k þ C 1ð Þ

m0m0

� ��1
�B 1ð ÞT

k C�1
��B

2ð Þ
k

�B 2ð ÞT
k C�1

��B
1ð Þ
k A 2ð ÞT

k C 2ð Þ�1

dd A 2ð Þ
k þ B 2ð ÞT

k C�1
��B

2ð Þ
k þ C 2ð Þ

m0m0

� ��1

2
64

3
75 ð23Þ
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and present an equivalent equation to (25). Their objective
function at the k+1 iteration is basically equivalent to

where D�(m̂(1)
i , m̂

(2)
i ) = t(m̂(1)

i , m̂
(2)
i ), Bk is the Jacobian

matrix associated with the cross‐gradient function and l is
a weighting factor. A particular choice of Linde et al.
[2006, 2008] is to set l large enough so as to mimic an
exact structural resemblance approach. A conjugate gradient
method was used to solve the problem and they have shown
successful results of joint 3‐D inversion of electrical resis-
tivity and cross‐hole georadar and seismic data.
[22] Hu et al. [2009] propose an alternative joint multi-

physics inversion approach with inexact structural con-
straints. Their objective function may be generally stated as
finding the updated seismic and electromagnetic model
models (

_
mk+1

(1) ,
_
mk+1

(2) ) that minimize

s
_
m

1ð Þ
kþ1;

_
m

2ð Þ
kþ1

� �
¼

d 1ð Þ
0 � f 1ð Þ _

m
1ð Þ
kþ1

� �
d 2ð Þ
0 � f 2ð Þ _

m
2ð Þ
kþ1

� �
�������

�������
2

C�1
dd

þ D
_
m

1ð Þ
kþ1

D
_
m

2ð Þ
kþ1

������
������
2

C�1
DD

þ B 1ð Þ
k

_
m

1ð Þ
kþ1

B 2ð Þ
k

_
m

2ð Þ
kþ1

������
������
2

C�1
��

: ð27Þ

As in the previous formulations, their weighting covariance
matrices are all diagonal (i.e., no implicit cross correlation).
The structural constraint in equation (27) is notably different
from that of equation (26). The least squares normal equations
derived from equation (27) have two fundamental differences
from those given in equations (23) and (24). First, the cor-
responding Hessian matrix Hk lacks the cross‐correlating
block termBk

(1)TC��
−1 Bk

(2) present in (23). This fully decouples
the solution of equation (27) into two separate minimization
problems that make the problem less computationally
expensive but at the cost of loosing valuable cross‐correlating
terms. Second, the corresponding gradient vector (compare
equation (24)) lacks the structural resemblance termBk

( j)TC��
−1

(D�(
_
mk

(1),
_
mk

(2))). This effectively makes the updated models
at iteration k+1 (m̂k+1) insensitive to the mutual structural
dissimilarities D�ð _

mk
(1),

_
mk

(2)) borne by their predecessors
(m̂k). The combined effect is that the cross‐gradient function
may never attain values close enough to zero unless one of the
property gradients becomes zero itself. We therefore think

that there is no compelling argument in favor of using this
approach.

3.3. Joint Inversion With Direction‐Independent
Structural Constraints
[23] There are a few joint inversion approaches that dis-

regard the actual direction of the property changes despite
its wide use in image processing as an edge detector [e.g.,
Parker, 1997] and indicator of even the actual magnitude of
property changes. In this field, Haber and Oldenburg [1997]
and Zhang and Morgan [1997] proposed independently the
use of normalized versions of Laplacian operators (� =
�r2m) as measures of image morphology and specifically
the edges of objects present in the images (equations (8)
and (9)). Haber and Oldenburg [1997] define the objective
function as minimizing

s
_
m

1ð Þ
;

_
m

2ð Þ� �
¼

d 1ð Þ
0 � f 1ð Þ _

m
1ð Þ� �

d 2ð Þ
0 � f 2ð Þ _

m
2ð Þ� �

�������
�������
2

	

þ �
_
m

1ð Þ� �
� �

_
m

2ð Þ� ���� ���2; ð28Þ

where the structural measure � is defined in equation (8) and
m is a weighting factor that controls the trade‐off between
structural difference and data misfit. The functions f (j) are
linearized and the equation solved iteratively using Krylov
space techniques. In contrast to the previously described
approaches, this particular scheme cannot emulate an exact
resemblance approach as the damping factor m cannot be
restricted to a large value and must be designed experimen-
tally. The problems of convergence and local minima are
partially alleviated by restricting the step size in the iteration
by adding an extra term and damping factor, x||dm||2 in the
objective function. In this case the selection of both m and x is
done using different approaches. The procedure of stepwise
length control resembles the data weighting relaxation used
by the other approaches. Zhang and Morgan [1997] propose
an objective function that closely resembles equation (28). In
their case, the corresponding structure curvatures are nor-
malized by the average values of the Laplacian operator
across each image. This normalizing factor must be chosen
based on a previous estimate of the models in order to con-
serve the linearity of the structural measure.

s
_
m

1ð Þ
kþ1;

_
m

2ð Þ
kþ1

� �
¼

d 1ð Þ
0 � f 1ð Þ _

m
1ð Þ
k

� �
þ A 1ð Þ

k
_
m

1ð Þ
kþ1 �

_
m

1ð Þ
k

� �h i
d 2ð Þ
0 � f 2ð Þ _

m
2ð Þ
k

� �
þ A 2ð Þ

k
_
m

2ð Þ
kþ1 �

_
m

2ð Þ
k

� �h i
�������

�������
2

C�1
dd

þ
_
m

1ð Þ
kþ1 � m 1ð Þ

0

_
m

2ð Þ
kþ1 � m0

2ð Þ

������
������
2

c�1
��

þ �2 D�
_
m

1ð Þ
k ;

_
m

2ð Þ
k

� �
þ B 1ð Þ

k
_
m

1ð Þ
kþ1 �

_
m

1ð Þ
k

� �
þ B 2ð Þ

k
_
m

2ð Þ
kþ1 �

_
m

2ð Þ
k

� ���� ���2; ð26Þ
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3.4. Uncertainty Analysis in Structure‐Coupled
Multiphysics Imaging
[24] Although one can quickly appraise the solution to a

given joint inverse problem by examining the cross‐gradients
function [e.g., see Gallardo and Meju, 2007], to quantify the
quality of the parameters estimated by joint multiphysical
inversion, the full covariance information or bounding solu-
tions must be determined. The standard uncoupled least

squares solution
_
mLS =

"
_
m 1ð Þ

LS
_
m 2ð Þ

LS

#
that is an update of a pre-

vious model estimate
_
mk =

"
_
m 1ð Þ

k
_
m 2ð Þ

k

#
can be expressed as

(compare equation (13))

_
mLS ¼ _

mk þ N�1
k nk ; ð29Þ

where Nk and nk are given by equations (14) and (15),
respectively. Note that in this expression, all the random
variables are associated with the vector nk (see equation (15)).
The estimator

_
mk+1 of the structurally coupled models given

in equation (13) may then be compactly expressed as

_
mkþ1 ¼ _

mLS � N�1
k BT

k BkN
�1
k BT

k

� ��1
BkN

�1
k nk þD�

_
mkð Þ
 �

:

ð30Þ

[25] Since
_
mk+1 depends on observable data which are

assumed to be random variables, this estimate is itself a
random variable. We can then calculate the mathematical
expectation of this estimate as

E
_
mkþ1ð Þ ¼ E

_
mLSð Þ � N�1

k BT
k BkN

�1
k BT

k

� ��1

� BkN
�1
k E nkð Þ þ E D�

_
mkð Þð Þ
 �

: ð31Þ

Hence, it is easy to show that E(
_
mk+1) = E(

_
mLS) if the

following two conditions are satisfied:
[26] (1) E(d0 − f (

_
mk)) = 0, i.e., if model predictions and

observation errors do not show a systematic bias, for
instance, due to incorrect assumptions of model dimen-
sionality, incompatible parameterizations or unpredicted
systematic effects in the data. This estimation bias remains
not only in the E(

_
mLS) term but also as a propagated

structural uncertainty in the reconstructed images given by
the quantity −N−1 BT(BN−1 BT)−1 BN−1 AT Cdd

−1E(d − f(
_
mk)).

[27] (2) E(D�(
_
mk)) = 0. This condition relates to the

accuracy of D� as a measure of common structure.
[28] Once these two conditions are satisfied, it can be

demonstrated that E(
_
mk+1) = m only when the estimator

E(
_
mLS) = m, i.e., when the least squares estimator is

unbiased.
[29] Statistically, the covariance matrix of the joint

inversion estimator is defined as

Cm̂m̂ ¼ E m̂kþ1 � E m̂kþ1ð Þð Þ½ � m̂kþ1 � E m̂kþ1ð Þð Þ½ �T : ð32Þ

If

_
mkþ1 ¼ _

mk þ N�1
k nk � Pk BkN

�1
k nk þD�

_
mkð Þ
 � ð33Þ

and

Pk ¼ BkN
�1
k BT

k

� ��1
; ð34Þ

then

_
mkþ1 � E

_
mkþ1ð Þ ¼ _

mk � E
_
mkð Þ½ �

þ N�1
k � N�1

k BT
k PkB

T
k N

�1
k

� �
nk � E nkð Þ½ �

� Pk D�
_
mkð Þ � E D�

_
mkð Þð Þ½ �: ð35Þ

The direct application of equation (32) will require good
estimates of the covariance matrix of the previous model or
iterate, and the mutual cross‐coupling of these two estimates
and actual experimental data. Unfortunately all these esti-
mates will be generally unavailable. Instead, wemay consider
that the previous model serves only as a fixed reference point
and hence assume that E(

_
mk) =

_
mk and E(t(

_
mk)) = t(

_
mk).

Although it may be argued that this assumption may limit
the role of the covariance matrix to a stability measure, it
will be much easier to compute and will provide a useful
preliminary insight into the uncertainty problem.
[30] Using equations (32)–(35), it is straightforward to

show that

Cm̂m̂ ¼ N�1
k � N�1

k BT
k PkBkN

�1
k : ð36Þ

For comparison, if the same criterion is applied to the least
squares estimator given by equation (35) then, the covari-
ance of the joint estimator can be restated as

Cm̂m̂ ¼ Cm̂LSm̂LS � Cm̂LSm̂LSB
T
k PkBkCm̂LSm̂LS: ð37Þ

Since the second part of this expression is a positive semi-
definite matrix, then the diagonal elements of Cm̂m̂ will not
be greater than those of Cm̂LSm̂LS, which can be interpreted
as an increased precision of the jointly estimated model
parameters over the conventional separate estimations. Addi-
tionally, the off‐diagonal blocks of the covariance matrix
Cm̂m̂ bear nonzero values that result in an intrinsic correlation
between the parameters of different model representations
given exclusively by the right hand terms of equation (37),
i.e., by the common structure. It is notable that the corre-
lation terms of equation (37) are intrinsically dependent on
individual intraimage correlations from the least squares
estimator Cm̂LSm̂LS, which may be driven by both data and
regularizing assumptions. The question here is, Is this
simplified covariance estimation technique realistic for the
typical large‐scale inverse problems encountered in geo-
physical sciences?
[31] Equations (32)–(37) are based upon a linear analysis

of a nonlinear problem, with additional simplifications that
we introduced. Note that the inverse of the normal equations
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matrix that carries the covariance information is very expen-
sive to compute and hence a drawback when dealing with
large‐scale inverse problems. Consequently, these equations
may only serve as metrics for simple model appraisal in small‐
size joint inverse problems. For large data sets, there is an
increasing interest in the use of Monte Carlo integration
methods for approximating large error covariance matrices
especially in gravity field modeling, and facilitating the related
error propagation computations [see, e.g., Gundlich et al.,
2003; Alkhatib and Schuh, 2007]. These methods can be
easily adapted to large‐scale structure‐coupled inverse prob-
lems. As noted elsewhere in a different context [Borovikov
et al., 2005], an important advantage of Monte Carlo covari-
ance estimation is that it will provide a natural way to estimate
cross covariances between the fields of different physical
variables that constitute the parameters of the structure‐
coupled models. The regularized extremal bounds analysis
method [Meju, 2009] has been suggested for computingmodel
bounds which are consistent with our measurement and
modeling errors in nonlinear inversion, but this may be
unfeasible for some large‐scale joint inverse problems.

4. INTEGRATION OF PHYSICAL AND
NONPHYSICAL INFORMATION

[32] Realistic integration of hard and soft (non‐physics‐
based) constraints is a nontrivial mathematical challenge. In
geophysical imaging, observational data on a physical system
may include remote measurements on the surface of the Earth

and in situ recordings within boreholes, as well as laboratory
measurements on core samples taken at different depths in
the boreholes and their nonnumerical geological descriptions.
These data are thus heterogeneous and of multiple‐spatial
(i.e., micro‐ to macro‐) scale in nature. Conventionally,
geologic scenarios, seismic and petroleum production data
are integrated using a probabilistic approach [Caers et al.,
2006]. Some workers [Gallardo, 2007b; Lelièvre, 2009;
Lelièvre and Oldenburg, 2009] demonstrate that geological
and geophysical data can also be integrated naturally in joint
image reconstruction using a deterministic approach with
much less computational burden. The exciting prospect here
is the slowly emerging possibility of realistic structural and
compositional classification of targets via deterministic or
Bayesian structure‐coupled joint inversion. In the Earth
sciences, this will lead to improved prediction of rock
physical properties relevant to fluid flow in subterranean
reservoirs, if multiscale variations can be adequately accounted
for as discussed in section 5.1.
[33] Cardiff and Kitanidis [2009] developed the equivalent

Bayesian framework for gradient‐based structural inversion
and uncertainty analysis in hydrology. They propose a
Bayesian inversion protocol, which permits the definition of
different structural zones or hydrofacies locations using the
level set method and for moving the boundaries between
zones using a gradient‐based technique that improves fit
through iterative deformation of the boundaries. They dem-
onstrate that the level set method is well suited for joint
inversion problems and present a strategy for integrating
different data types (such as hydrologic and geophysical) for
simultaneous boundary delineation without assuming strict
petrophysical relationships. Although the underlying phi-
losophy in their probabilistic joint inversion approach is the
same as in the cross‐gradients method of Gallardo and Meju
[2003, 2004], it is associated with a more significant com-
putational overhead, especially in multidimensional space.
The challenge is to incorporate lithological information into a
multiphysics inversion algorithm within a deterministic
framework.
[34] Gallardo [2007b] applied the cross‐gradient tech-

nique to synthetic data consisting of remote geophysical
observations and borehole geological data. The test model
consists of a homogeneous medium in which are embedded
two rectangular bodies (labeled A and B in Figure 5). Two
20 m deep boreholes (BH1 and BH2 in Figure 5) intersect
these target bodies. BH1 permeates the upper part of body
A whereas BH2 cuts across the entire thickness of body B.
The various parts of the model are assigned coherent values
of density, electrical resistivity and magnetization, while the
assumed corresponding lithological units (lithotypes for
short) are assigned integer numbers. To all the synthetic
data were added normally distributed Gaussian errors with
the respective standard deviations given in Table 1.
[35] Gallardo [2007b] inverted these synthetic data using

a homogeneous initial model. Three different inversion
experiments were run, namely, (1) Separate inversion of
geophysical and lithotype data with no cross‐gradient con-
straint, (2) joint inversion of the multiple geophysical data

Figure 5. Test model used for the joint cross‐gradients
inversion of geophysical and lithological data. Two tabular
bodies A and B are embedded in a homogeneous medium.
Two boreholes BH1 and BH2 intersect these bodies. The
schematic borehole sections show the lithological units that
are conventionally qualitatively described. The tabulated
numbers represent the assigned property values for the
rock‐type, density (g/cm3), magnetization (A/m), and elec-
trical resistivity (W.m) of the various geological units in
the model.
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alone, yielding structurally coupled physical property dis-
tributions (density, magnetization and logarithm of electrical
resistivity), and (3) joint inversion of all geophysical and
synthetic lithotype data yielding four coupled property dis-
tributions. The final models obtained from the three inversion
experiments are compared in Figure 6 and their statistical
characteristics are summarized in Table 1. As shown in
Table 1, they all produced models with appropriate data
misfit, and marginal increments in the misfit are correlated
to the increment in the number of jointly estimated images.
Notice that the set of models found in each experiment
show remarkable differences in structural resemblance. The
images obtained from separate (i.e., single physics) inversion
(Figures 6a–6d) show significant differences; the gravity and
magnetic models reflect the lack of depth resolution and the
lithotype model is affected by the complete lack of knowl-
edge of what lithologies exist beyond the confines of the two
boreholes. In the latter case, the lithotype values are extrap-
olated on the basis of the smoothness constraint, i.e., smeared
in the model following mainly the extension of the known
borehole/surface lithological evidence. These structural dif-
ferences, as measured by the corresponding cross‐gradient
values for each pair of presented images, are listed in Table 2.
[36] The images obtained from structure‐coupled multi-

physics inversion are structurally compatible as shown by
the distribution of the physical properties (Figures 6e–6g) and
their significantly reduced cross‐gradient values (Table 2).
Gravity and magnetic models benefited significantly from,
and adopted the structure contributed by, the electrical model.
The images obtained from the joint geophysical and lithotype
inversion (Figures 6h–6k) bear similar features to those seen
in the purely multiphysical inversion experiment (Figures 6e–
6g), but the region around the boreholes are now better con-
strained by the addition of lithotype data leading to higher
model accuracy. However, the employed smoothness con-
straint is incompatible with the assumed sharp lithological
constraints and resulted in the marginally larger cross‐gradient
values for this experiment than for the purely multiphysical
experiment (see Table 2).

5. CHALLENGES, OPPORTUNITIES, AND FUTURE
DIRECTIONS

[37] We have so far discussed the use of measures of
common structure in the solution and integration of multi-
physics images and the associated uncertainties. There are
still hurdles to be scaled in the use of structural constraints for
combining information from multiple images acquired with
different devices and modalities. The outstanding conceptual,

physical and computational challenges are in the areas of
structural and compositional classification of physical reality
(see section 2.3), integration of soft (non‐physics‐based)
constraints such as geological information in joint multi-
physics imaging (see section 4), multiscale modeling of
heterogeneity or anisotropy and linkages to fluid flow phe-
nomena, uncertainty quantification for large‐scale systems
(see section 3.4), and computational limitations. We will
address the challenges posed by model complexity and
computational issues next.

5.1. Complexity of Natural Physical Systems
[38] An important challenge in multiphysics imaging is

how to make two or more geophysical property fields con-
sistent if they have different scale lengths. For example,
electrical conductivity and reflectivity arising from magne-
totelluric and seismic measurements may differ significantly
in scale length. Gallardo et al. [2010] applied the cross‐
gradient constraint in the joint inversion of seismic reflection,
magnetotelluric, gravity and magnetic data from marine
exploration for hydrocarbons. The seismic reflection data
are the two‐way travel times (TWT) picked for five selected
reflectors in the seismic time section. The depths to these
reflectors (floating reflectors) were estimated using average
interval velocities as in conventional practice. For the cross‐
gradient joint resistivity and velocity inversion, a common
inversion grid was selected for all the geophysical methods
with dense sampling over the region of common data cov-
erage. To allow for features of different scale length, the grid
is resampled according to specific accuracy requirements
for the seismic and magnetotelluric forward modeling and
Jacobian computations. During the inversion process, the
cross‐gradient constrained MT conductivity and seismic
velocity are estimated whereas the depths to the floating
reflectors are treated as a priori information, consistent
with equation (12). More research is needed along this line.
Perhaps the most difficult challenge facing structure‐coupled
multiphysics inversion is how to model the complexity of
most natural physical systems that form the subjects of
investigation. While most biological bodies contain well‐
defined interfaces between different regions of tissue‐types
or anatomical material (i.e., essentially structured), the Earth
system is rather structurally and compositionally complex.
Consequently in Earth imaging, direct recovery of structural
information from multiple physical measurements is fraught
with uncertainty unless adequate attention is paid to issues
such as anisotropy and heterogeneity, and their multiscale
nature (i.e., ranging frommicroscale tomega scale). Although

TABLE 1. Standard Deviation of the Gaussian Noise Added to Each Data Set and Level of Misfit Achieved for Each of the Three
Inversion Experimentsa

Type of Inversion
Gravity Magnetics Resistivity Lithotype

s = 2 (mGal) s = 2 (nT) s = 3(%) s = 0.1 units

Separate inversion RMS = 0.864 RMS = 0.742 RMS= 0.948 RMS = 0.927
Joint geophysical inversion RMS = 0.881 RMS = 0.777 RMS = 1.031 ‐
Joint lithotype inversion RMS = 0.890 RMS = 0.789 RMS = 1.077 RMS = 1.002

aThe misfit is the normalized RMS value of the data residuals.
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it is still argued whether heterogeneity and anisotropy are
separable in gross Earth imaging, there has been an increasing
awareness of complexity as an essential theoretical challenge
in many important predictive modeling problems. Multiscale
concepts are believed to provide a rational path for treating
the errors associated with model limitations since they
essentially provide a framework for information exchange
between different representations of a physical phenomenon.
Simultaneous execution of these operational representations
of information will lead to better models of physical reality,
relevant to improved multiphysics imaging.
[39] The complexity of natural physical systems also

dictates that adequate system characterization must involve
some combination of measurements of the electrical, mech-
anical and chemical (or fluid transport) properties of the
bodies under investigation. In the geophysical sciences, the
physics of fluid flow and electromagnetic induction or sound
wave propagation phenomena in porous media can be coupled
through fluid saturation equations [Pride, 1994; Alpak et al.,
2008]. Linkages between multiphysics imaging and fluid
flow processes within materials in the Earth’s crust are now
emerging [e.g.,Cassiani and Binley, 2005; Linde et al., 2006;
Alpak et al., 2008;Looms et al., 2008].Binley et al. [2004] use
a combined multidimensional georadar and electrical resis-
tivity tomography to constrain moisture transport modeling
for a relatively homogeneous sandstone material. Binley et al.
[2004] generate realizations of 1‐D geology (homogeneous
sandstone) based on gamma logs and geostatistics of the
geophysical data, then simulate hydrological models of the
geology and compare against cross‐hole georadar responses.
Cassiani and Binley [2005] build on Binley et al. [2004] and
try to link between hydrological and geophysical models for
this relatively homogeneous sandstone material. Linde et al.
[2006, 2008] use the results from joint multidimensional
inversion of multiplatform geophysical measurements to con-
strain water flow modeling in sedimentary rocks occurring
at shallow depth. Looms et al. [2008] run hydrological
model of recharge and compare responses in an attempt to
find the optimum hydrological parameters comparing against
3‐D electrical resistivity tomography (ERT) and cross‐hole
georadar images. Alpak et al. [2008] use the result of com-

bined multiphysical structural imaging to inform subsequent
flow modeling of a petroleum system. What is now required
is the simultaneous linkage of multiphysics structural imag-
ing and flow or transport modeling in 3‐D anisotropic media.
We see this as the way forward and the ultimate challenge for
any method of remote interrogation of complex systems such
as the fluid‐bearing regions within the Earth’s crust. How-
ever, considerable computational resources will be required
for realistic inverse modeling of such systems.
[40] An obvious application of 3‐D joint anisotropic

multiphysics and transport modeling will be in the important
area of time‐lapse characterization and monitoring of spa-
tiotemporal changes in physiochemical systems. The idea that
physical properties or state variables change with time is not
new. In medical imaging, the study of temporal image series,
the monitoring of time evolution of an agent injection, and
treatment verification of preintervention and postintervention
images are well established examples. In geophysical imag-
ing of hydrocarbon reservoirs, the difference between data
acquired at an initial survey (base data) and another set
acquired in successive time periods (monitor data) is used
routinely to show the location of water replacing oil which
may be mapped across the field using controlled seismic
sources [e.g., Lumley, 2001; Calvert, 2005; Aarre, 2006] or
electromagnetic methods (Italicized terms are defined in the
glossary, after the main text.) [Orange et al., 2009]. In geo-
hydrolology, infiltration experiments or specially injected
tracers are tracked in space and time, allowing the charac-
terization of the properties of the subterranean transport
media [Binley et al., 2004]. In biological imaging, soil water
extraction by plant roots, the movement of sap in tree trunks
and the development of root mass in the subsoil have been
monitored using physics‐based approach. In all these fields,
volumetrically significant movement of fluids may occur
on length scales below that of the resolution and noise
threshold allowed by an individual physical data set such that
any inferences are subject to uncertainty. Combiningmultiple
physical measurements of different modalities may be a better
approach. For example, there are significant uncertainties in
the quantitative analysis of only time‐lapse seismic mea-
surements over petroleum reservoirs [Landrø, 2002; Furtney
and Woods, 2006; Tsuneyama and Mavko, 2007]. Yet it is
observed that fluid withdrawal from a reservoir may be asso-
ciated with geomechanical deformations (especially in weak
rock formations) and seismic time shifts [e.g., Minkoff et al.,
2004; Hatchell and Bourne, 2005; Aarre, 2006; Rickett
et al., 2007]. An established physical method for imaging
or monitoring subterranean fluid flow processes is the spon-
taneous polarization method [e.g., Kemna et al., 2004], and
changes in reservoir porosity, pressure and fluid saturation
computed using coupled fluid flow and geomechanical
deformation modeling can be used to determine changes in
density and seismic velocities with time [Minkoff et al.,
2004]. It is thus logical to expect that fully coupled 3‐D
fluid flow and geomechanical deformation simulations and
seismic modeling, linked with spontaneous potential and/or
induced polarization modeling using the cross‐gradients
approach, would be a useful way forward in time‐lapse

TABLE 2. Summary of RMS Cross‐Gradient Values for the
Models Derived From Separate Inversion (in Parentheses),
Joint Geophysical Inversion (+), and Joint Geophysical and
Borehole Data Inversion (++)a

Cross‐Gradient
Values ×10−5 Gravity Magnetics Resistivity Lithotype

Gravity 0 (173) (386) (212)
Magnetic 0.60+

2.05++
0 (254) (152)

Resistivity 0.98+

2.59++
1.88+

2.27++
0 (276)

Lithotype ‐
2.60++

‐
1.62++

‐
2.67++

0

aAny combination of two images that are exactly the same have zero
cross‐gradient values. Note the significant reduction in cross‐gradient
values for the structurally coupled joint inversion models compared to
the separately estimated models.
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analysis. However, this would be fraught with significant
computational difficulties.

5.2. Computational Issues
[41] What strategies might be adopted to overcome some

of the computational challenges faced in joint multiphysics
inversion? The gradient‐based structurally coupled 3‐D
multimodal imaging approach is computationally intensive
since it requires the full sensitivity matrix for each physical
method. It can be implemented using direct matrix inversion
techniques [Haber and Oldenburg, 1997; Gallardo and
Meju, 2003; 2004; 2007; Fregoso and Gallardo, 2009] or
a conjugate gradient approach [Haber and Oldenburg, 1997;
Tryggvason and Linde, 2006]. The required sensitivities can
be efficiently computed using reciprocity or adjoint state
methods [e.g., Kravaris and Seinfeld, 1985; Norton, 1999;
Cirpka and Kitanidis, 2000; Rodi and Mackie, 2001; Shin
et al., 2001;Meyer et al., 2006;Commer andNewman, 2008].
The key challenge here is to make modifications to reduce
the number of predictive or forward modeling calculations
to a reasonable level during the computation of sensitivities.
A simple way to get around this computational difficulty for
the electrical method of geophysics, for example, is to initiate
the inversion using a homogeneous half‐space for which the
sensitivity can be obtained analytically, use this in the first
two iterations, then compute the rigorous sensitivity matrix at
the third iteration and update it thereafter using the Broyden’s
technique [Dennis and Schnabel, 1996] as given by Sasaki
[2004]. Another strategy to adopt might be the data space
method of Siripunvaraporn et al. [2005]. The adjoint state
method is emerging as the technique of choice in large‐scale
imaging [e.g., Meyer et al., 2006; Commer and Newman,
2008] since, for n measurements, the determination of the
sensitivity matrix requires the solution of only one forward
problem and n adjoint problems that are similar to the forward
problem. Another important consideration is that the size of
numerical calculation will dramatically increase if realistic
structures are to be modeled in 3‐D; it is therefore better to
parallelize the code to take advantage of modern computer
architecture and to use a conjugate gradients approach. For
example, Commer and Newman [2008] in their inversion of
only electromagnetic data from an oil exploration survey
required 200 million field unknowns in predictive modeling
(forward problem) and imaging grids 400 nodes on a side.
They implemented two levels of parallelization, in model
space (requiring separate forward simulation and inversion
grids) and in data space (requiring independent forward cal-
culation of each transmitter‐receiver set). Their imaging
scheme was successfully tested on multiple distributed com-
puting systems (10–32,766 processors).
[42] For any realistic large‐scale joint seismic and elec-

tromagnetic imaging with associated fluid flow modeling as
would obtain in energy resource and environmental appli-
cations, there will be a requirement for high levels of com-
putational efficiency (tailored separate grids for forward and
inverse modeling with potential for significant solution
acceleration; adjoint state method of sensitivity calculation)

and several thousands of processors. The conjugate gradients
method may be the method of choice when rapid conver-
gence toward a good data fit is desired. However, like all
approximate subspace methods, no robust estimates of
model uncertainty are readily available for 3‐D multi-
physics inverse problems using this approach. Direct matrix
inversion provides the possibility to obtain covariance and
resolution matrices but have been attempted for small‐scale
single‐physics imaging [Alumbaugh and Newman, 2000].
Present‐day computational resources will allow full inver-
sion methods such as the singular value decomposition
method [e.g., Kalscheuer and Pedersen, 2007; Kalscheuer
et al., 2010] to be applied to some problems with more
than 10000 unknowns to obtain covariance and resolution
matrices. An important step forward in multiphysics data
imaging would thus be to develop direct 3‐D joint inversion
techniques to obtain more mathematically rigorous estimates
of model parameter uncertainty or resolution for problems
with millions of unknowns. However, given the large‐scale
needs of the Earth science community, a Monte Carlo
covariance estimation strategy [e.g., Borovikov et al., 2005;
Alkhatib and Schuh, 2007] would seem to be the most
attractive way forward.

6. SUMMARY AND CONCLUSIONS

[43] It is well known in science and engineering that all
indirect inference of system parameters and states based on
finite observations is subject to uncertainty. The mathe-
matical models describing the physical processes underlying
the inference are oversimplified approximations of reality.
The inverted experimental observations are of limited mea-
surement accuracy. The typical physical system, such as the
Earth, is complex and multiscale in nature. The constituent
multiscale features have an aggregate effect on the measured
multiphysics responses that are difficult or impossible to
resolve, especially when inference is based on parameter
estimates from individual physical fields. Accordingly, the
issues of combined multiphysics parameter estimation and
uncertainty quantification are recognized as critical elements
necessary for continued advancement in imaging science.
Significant progress has been made in recent years in the
solution of geophysical imaging problems, and this review is
devoted to the emerging techniques for the direct recovery of
structural information from measured data using a general-
ized coupling based on structural gradients of the physical
property fields. The underlying philosophy in multiphysics
structure‐coupled imaging is that the data sets, though dis-
parate, should have features in common because they sense or
reflect the same geological structure. Structural similarity
between the multiple physical property distributions is
achieved by imposing the constraint that the cross‐product of
the gradients of the property fields should be zero at structural
boundaries for a given geological frame of reference. This can
be formulated mathematically through the model gradients
by requiring the cross‐product of the model gradients to
approach zero everywhere.
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[44] In conclusion, the important feature of the structure‐
coupled inversion approach is that it allows direct recovery
of structural information from physical data taken from
different measurement platforms or modalities that may or
may not be phenomenologically related. It is now possible
to perform joint inversion wherever two or more physically
measured data sets are available, and the relevant parameters
are controlled by the same structure or state variables of the
physical system being investigated. The inverse problems
that are solved in joint inversion are much larger than for
single‐physics‐based imaging. These can be handled to a large
extent by the currently available computational resources,
especially for small‐scale problems. However, to fully exploit
the system information in joint inversion, appropriate meth-
ods for quantifying model parameter reliability are desirable.
We discussed some emerging metrics for assessing model
uncertainty but suggest that further work needs to be done in
this important area of research. Also in recent years, there has
been an increasing awareness of complexity as an essential
theoretical challenge in many important predictive modeling
problems, and we expect 3‐D anisotropic or multiscale
modeling to become an integral part of large‐scale multi-
physics imaging in the next 5–10 years. There are some
practical computational considerations that are necessary in
large‐scale structure‐coupled 3‐D multiphysics inverse mod-
eling. Since this process requires 3‐D forward modeling and
imaging solutions, parallelization in the model and data spaces
is necessary. The multilevel parallelization should be tailored
to suit the attendant multiphysics forward simulation pro-
cesses and the heterogeneous multicomponent data sets to be
inverted, thus allowing for realistic imaging. Separation and
optimization of the simulation and inversion grids will be
essential, especially for joint 3‐D full waveform seismic and
electromagnetic imaging, and have potential for significant
solution acceleration. It is anticipated that therewill be several
improvements in large‐scale 3‐D multiphysics imaging over
the next 2–5 years because of the present high interest from
the energy industry. We expect a massive increase in mea-
sured data volumes from 3‐D coincident multicomponent
seismic and electromagnetic surveys offshore. The large
seismic and electromagnetic data and imaging volumes
would require at least 10–100 times the present computing
resources. We predict that the future availability of robust
joint 3‐D full waveform seismic and electromagnetic imaging
coupled with fluid flow modeling will revolutionize resource
exploration and development, especially in the energy
industry.

GLOSSARY

Electrical resistivity method: measures the ability of
Earth materials to impede the flow of galvanic currents
passed through the materials. The actual physical property
measured is electrical resistivity (SI units are ohm.m). The
reciprocal is electrical conductivity (SI units are Siemens/m).
Electromagnetic methods: measure the ability of Earth

materials to pass current when inductively energized. The
actual physical property measured is electrical conductivity.

Cross‐hole imaging: the art of reconstructing physical
property fields in the region between boreholes using data
furnished by sources and sensors that are systematically
located in different boreholes.
Formation factor (F): a measure of the reduction in

electrical conductivity due to the addition of an insulating
phase to an electrolyte. F = sw/sb, where sw is the electrolyte
conductivity and sb is the bulk rock conductivity.
Hydrofacies: a concept used to describe types or classes

of groundwater with characteristic chemical compositions.
Geophysical well logging methods: measure varia-

tions in physical properties of rock down a borehole. These
are adaptations of methods used on the surface of the Earth.
The common ones are gamma ray, density, temperature,
resistivity and sonic logging.
Georadar or ground‐penetrating radar (GPR)

method: records high‐frequency electromagnetic waves
transmitted and reflected from interfaces of contrasting
dielectric permittivity.
Gravity method: measures spatial variations in the

Earth’s gravitational field caused by bodies of different den-
sities. Physical property measured is density (SI units are
Kg/m3).
Lithology: a geological term for rock‐type or strati-

graphic units.
Lithofacies: a mappable subdivision of a stratigraphic

unit that can be distinguished from adjacent subdivisions
by its facies or lithologic features such as grain size, texture,
mineralogy, and environment of formation.
Lithotype: a geological unit characterized by its spe-

cific lithology, depositional environment and climatic‐
stratigraphic position.
Magnetic method: measures spatial variations in the

Earth’s magnetic field caused by bodies of different magne-
tizations. Physical property measured is magnetic suscepti-
bility which is the degree of magnetization of a material
in response to an applied electric field.
Petrophysical relations: established correlations

between rock‐physical properties (such as porosity and
water saturation) and the measurable geophysical signatures
(such as electrical resistivity and sound wave velocity).
Seismic methods: measure spatial variations in the

speed of propagation of sound waves through the Earth,
commonly in the form of energy refraction or reflection at
interfaces. Velocity and attenuation of elastic waves in Earth
materials can be inferred from remote measurements. Two
common seismic velocities used in imaging are compres-
sional wave velocity (Vp) and shear wave velocity (Vs).
The motion of a compressional wave is in the same direction
as the wave propagation.
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